首页 | 本学科首页   官方微博 | 高级检索  
     


Development of the step complexity measure for emergency operating procedures using entropy concepts
Authors:Jinkyun Park   Wondea Jung  Jaejoo Ha
Affiliation:Integrated safety assessment team, Korea atomic energy research Institute, P.O. Box 105, Duckjin-dong, Yusong-ku, Taejon, 305-600, South Korea
Abstract:For a nuclear power plant (NPP), symptom-based emergency operating procedures (EOPs) have been adopted to enhance the safety of NPPs through reduction of operators’ workload under emergency conditions. Symptom-based EOPs, however, could place a workload on operators because they have to not only identify related symptoms, but also understand the context of steps that should be carried out. Therefore, many qualitative checklists are suggested to ensure the appropriateness of steps included in EOPs. However, since these qualitative evaluations have some drawbacks, a quantitative measure that can roughly estimate the complexity of EOP steps is imperative to compensate for them.In this paper, a method to evaluate the complexity of an EOP step is developed based on entropy measures that have been used in software engineering. Based on these, step complexity (SC) measure that can evaluate SC from various viewpoints (such as the amount of information/operators’ actions included in each EOP step, and the logic structure of each EOP step) was developed.To verify the suitableness of the SC measure, estimated SC values are compared with subjective task load scores obtained from the NASA-TLX (task load index) method and step performance time obtained from a full scope simulator. From these comparisons, it was observed that estimated SC values generally agree with the NASA-TLX scores and step performance time data. Thus, it could be concluded that the developed SC measure would be considered for evaluating SC of an EOP step.
Keywords:Nuclear power plants   Emergency operating procedures   complexity factors   Step complexity evaluation   Entropy   NASA-TLX (task load index)   Step performance time
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号