首页 | 本学科首页   官方微博 | 高级检索  
     


Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal optical arrangement
Authors:Fu Jing-Lin  Fang Qun  Zhang Ting  Jin Xin-Hua  Fang Zhao-Lun
Affiliation:Institute of Microanalytical Systems, Zhejiang University, Hangzhou, 310028 China.
Abstract:In this work, a simple LIF detection system based on an orthogonal optical arrangement for microfluidic chips was developed. Highly sensitive detection was achieved by detecting the fluorescence light emitted in the microchannel through the sidewall of the chip to reduce scattered light interference from the laser source. A special crossed-channel configuration, with a 1.5-mm distance from the separation channel to the sidewall of the glass chip, was designed in order to facilitate collection of emitted fluorescence light through the sidewall. The significant difference in intensity distribution of scattered laser light on the chip plane observed in this study was fully exploited to optimize S/N ratio of detected signals by rejection of scattered light, both through systematic measurements and employing ray-tracing simulation. A fluorescence collection angle of 45 degrees in the chip plane gave the best result, with a scattered light intensity 1/38 of that obtained at an angle of 90 degrees. Sodium fluorescein and fluorescein isothiocyanate-labeled amino acids were used as model samples to demonstrate the performance of the LIF system. A detection limit (S/N = 3) of 1.1 pM fluorescein was obtained, which is comparable to that of optimized confocal LIF systems for chip-based capillary electrophoresis. Apart from the high detection power, the system also has the advantages of simple optical structure, compactness, and ease in building.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号