首页 | 本学科首页   官方微博 | 高级检索  
     

粗糙集用于建立基于多变量决策树的变压器故障诊断模型
引用本文:王楠,律方成,李和明. 粗糙集用于建立基于多变量决策树的变压器故障诊断模型[J]. 电工电能新技术, 2004, 23(1): 21-24,33
作者姓名:王楠  律方成  李和明
作者单位:华北电力大学,河北,保定,071003;华北电力大学,河北,保定,071003;华北电力大学,河北,保定,071003
摘    要:采用决策树方法建立变压器故障诊断模型,可以方便地处理含有非数值特征的故障样本,且能够从样本中学习知识并简化知识,具有较好的适应性.但是采用单变量决策树描述复杂关系仍存在一定的局限性,本文提出基于多变量决策树的变压器故障诊断方法.并通过粗糙集辨识矩阵确定多变量检测特征选取,来实现多变量决策树的建立,能有效地约简知识,直观且易于理解.最后通过实例比较验证了方法的有效性.

关 键 词:变压器  故障诊断  多变量决策树  粗糙集
文章编号:1003-3076(2004)01-0021-04

Application of rough set to build transformer fault diagnosis model based on multivariate decision tree
WANG Nan,LU Fang-cheng,LI He-ming. Application of rough set to build transformer fault diagnosis model based on multivariate decision tree[J]. Advanced Technology of Electrical Engineering and Energy, 2004, 23(1): 21-24,33
Authors:WANG Nan  LU Fang-cheng  LI He-ming
Abstract:Through decision tree to build the model of transformer fault diagnosis, not only fault samples with nonnumerical values can be processed, but also rules can be learned and knowledge can be simplified with better adaptive capability. However, there exists certain limitation to describe complex cause and reason relationships through univariate decision tree, in which any symptom may be detected repeatedly along one path. In this paper, transformer fault diagnosis approach based on multivariate decision tree is presented. To improve analytical efficiency, several symptoms can be detected synchronously in one node of the multivariate decision tree. Based on advantages of rough set, such as knowledge reduction and classification, through discernibility matrix of rough set to select symptoms and construct multivariate decision tree for transformer fault diagnosis, the diagnosis knowledge can be reduced. And the diagnosis model is visual and easy to understand. Results of comparison test verify the effectiveness of the approach.
Keywords:transformer  fault diagnosis  multivariate decision tree  rough set
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号