首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation and characterization of pulsed laser deposited CdTe thin films at higher FTO substrate temperature and in Ar + O2 atmosphere
Authors:Chao Ding  Zhenxun Ming  Bing Li  Lianghuan Feng  Judy Wu
Affiliation:1. College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan, China;2. Department of Physics and Astronomy, Kansas University, Lawrence 66045, USA
Abstract:Pulsed laser deposition (PLD) is one of the promising techniques for depositing cadmium telluride (CdTe) thin films. It has been reported that PLD CdTe thin films were almost deposited at the lower substrate temperatures (<300 °C) under vacuum conditions. However, the poor crystallinity of CdTe films prepared in this way renders them not conducive to the preparation of high-efficiency CdTe solar cells. To obtain high-efficiency solar cell devices, better crystallinity and more suitable grain size are needed, which requires the CdTe layer to be deposited by PLD at high substrate temperatures (>400 °C). In this paper, CdTe layers were deposited by PLD (KrF, λ = 248 nm, 10 Hz) at different higher substrate temperatures (Ts). Excellent performance of CdTe films was achieved at higher substrate temperatures (400 °C, 550 °C) under an atmosphere of Ar mixed with O2 (1.2 Torr). X-ray diffraction analysis confirmed the formation of CdTe cubic phase with a strong (1 0 0) preferential orientation at all substrates temperatures on 60 mJ laser energy. The optical properties of CdTe were investigated, and the band gaps of CdTe films were 1.51 eV and 1.49 eV at substrate temperatures of 400 °C and 550 °C, respectively. Scanning electron microscopy (SEM) showed an average grain size of 0.3–0.6 μm. Thus, under these conditions of the atmosphere of Ar + O2 (15 Torr) and at the relatively high Ts (500 °C), an thin-film (FTO/PLD-CdS (100 nm)/PLD-CdTe (~1.5 μm)/HgTe: Cu/Ag) solar cell with an efficiency of 6.68% was fabricated.
Keywords:CdTe thin films   Pulsed laser deposition   Substrate temperature   Solar cells
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号