首页 | 本学科首页   官方微博 | 高级检索  
     


Electrochemical characterizations of multi-layer and composite silicon-germanium anodes for Li-ion batteries using magnetron sputtering
Authors:Chang-Mook Hwang Jong-Wan Park
Affiliation:Department of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
Abstract:To improve the electrochemical performance of Si film, we investigate the addition of two film forms of Ge. Si/Ge multi-layered and Si-Ge composite electrodes that are fabricated by magnetron sputtering onto Cu current collector substrates are investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and extended X-ray absorption fine structure (EXAFS) are employed to analyze the structures of the Si-Ge electrodes. When used as an anode electrode for a lithium ion battery, the first discharge capacity of a Si/Ge 150 multi-layer cell with a ratio of Si 15 nm/Ge 3 nm is 2099 mAh g−1 between 1.1 and 0.01 V. A stable reversible capacity of 1559 mAh g−1 is maintained after 100 cycles with a capacity retention rate of 74.25%. Additionally, the Si0.84Ge0.16 composite has an initial discharge capacity of 1915 mAh g−1 and a capacity retention of 74.25%. In full cell tests of Si-Ge electrodes, the Si0.84Ge0.16/LiCoO2 cell delivers a specific capacity of approximatly 160 mAh g−1 and a capacity retention of 52.4% after 100 cycles. The results reveal that these two systems of sputtered Si-Ge electrodes can be used as anodes in lithium ion batteries with higher energy densities.
Keywords:Silicon  Germanium  Anode  Multilayer  Composite  Lithium-ion batteries
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号