首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进流形距离和人工蜂群的二阶段聚类算法
引用本文:夏卓群 欧慧 李平 武志伟 戴傲. 基于改进流形距离和人工蜂群的二阶段聚类算法[J]. 控制与决策, 2016, 31(3): 410-416
作者姓名:夏卓群 欧慧 李平 武志伟 戴傲
作者单位:长沙理工大学计算机与通信工程学院,长沙410114.
基金项目:

湖南省自然科学基金项目(14JJ7043);湖南省教育厅重点项目(14A004).

摘    要:

以改进的流形距离为相似度测度, 结合人工蜂群算法, 提出一种二阶段聚类算法. 首先根据局部密度、最大最小距离和近邻选择对数据集初步归类并得到簇代表点; 然后将聚类归属为优化问题, 通过改进的蜂群算法对簇代表点及没归类的样本点较快地搜索到最优聚类中心, 同时根据流形距离的全局一致性特征, 对样本进行精确的类别划分; 最后将两阶段算法综合归类. 实验结果表明, 所提出的算法可以获得良好的聚类效果.



关 键 词:

流形距离|人工蜂群算法|局部密度|最大最小距离|近邻选择

收稿时间:2014-12-30
修稿时间:2015-05-18

Two-phase clustering algorithm based on the improved manifold distance and the artificial bee colony algorithm
XIA Zhuo-qun OU Hui LI Ping WU Zhi-wei DAI Ao. Two-phase clustering algorithm based on the improved manifold distance and the artificial bee colony algorithm[J]. Control and Decision, 2016, 31(3): 410-416
Authors:XIA Zhuo-qun OU Hui LI Ping WU Zhi-wei DAI Ao
Abstract:

A two-phase clustering algorithm based on the improved manifold distance as the similarity measure combined with the bee colony algorithm is proposed. Firstly, based on local density, max-min distance and neighbors selecting, data set is initialized, and the representative points are obtained. Then, the clustering algorithm is viewed as an optimization problem, in which the correctly category is obtained by getting the optimal clustering center through the improved bee colony algorithm dealing with the representative and unclassified points, and obtaining the overall consistency information of the manifold distance. Finally, the two phase algorithms are classified. Experiment results show that the proposed algorithm has better clustering results.

Keywords:

manifold distance|artificial bee colony algorithm|local density|max-min distance|neighbors selecting

本文献已被 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号