首页 | 本学科首页   官方微博 | 高级检索  
     


A concentration-dependent multi-term linear free energy relationship for sorption of organic compounds to soils based on the hexadecane dilute-solution reference state
Authors:Zhu Dongqiang  Pignatello Joseph J
Affiliation:Department of Soil and Water, The Connecticut Agricultural Experiment Station, 123 Huntington Street, P.O. Box 1106, New Haven, Connecticut 06504, USA.
Abstract:A LFER of the type in the title is applied to sorption of numerous compounds to polyethylene and three soils for which sorption to natural organic matter (NOM) is presumed dominant. It provides fractional contributions to the Gibbs free energy of sorption corresponding to hydrophobic effects, dipolar/polarizability (D/P) effects in excess of the reference state, and the sum of possible specific forces such as H-bonding and pi-pi electron donor-acceptor (pi-pi EDA) interactions in excess of the reference state. Minimal inputs are the isotherm, the n-hexadecane-water partition coefficient and the Abraham pi parameter representing D/P effects. Sorption of all compounds to polyethylene can be described by considering only hydrophobic effects. Sorption of a calibration set of apolar compounds (aromatic and aliphatic hydrocarbons and chlorinated hydrocarbons) to the natural sorbents is well-described by a combination of hydrophobic and D/P effects. For the apolar set, D/P contributes approximately 15-40% (2-8% for cyclohexane) of sorption free energy. D/P effects increase with the degree of chlorination for aliphatic compounds. For aromatic compounds D/P effects increase with fused ring size but do not vary with degree of chlorination and chlorine substitution pattern. H-bonding contributes substantially to sorption of alcohols, and similarly for 2-nonanol and 2,4-dichlorophenol (33-44%). pi-pi EDA forces contribute to phenanthrene sorption in one case. The effects of concentration, sorbent aromaticity (literature NMR), and sorbent polarity (O + N)/C] on hydrophobic and D/P contributions for all compounds indicate that (a) molecules fill sites of progressively greater hydrophilic character; (b) the energy penalty for cavity formation in the solid decreases with concentration due to plasticization and greater intermolecular contact; (c) sorbent aromatic content more than sorbent polarity controls D/P interactions. Basing free energy on an inert electrostatic chemical environment afforded by n-hexadecane permits evaluation of direct electrostatic forces in NOM that contribute to sorption.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号