首页 | 本学科首页   官方微博 | 高级检索  
     


The chemorepulsive activity of the axonal guidance signal semaphorin D requires dimerization
Authors:A Klostermann  M Lohrum  RH Adams  AW Püschel
Affiliation:Molekulare Neurogenetik, Abteilung Neurochemie, Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt/Main, Germany.
Abstract:The axonal guidance signal semaphorin D is a member of a large family of proteins characterized by the presence of a highly conserved semaphorin domain of about 500 amino acids. The vertebrate semaphorins can be divided into four different classes that contain both secreted and membrane-bound proteins. Here we show that class III (SemD) and class IV semaphorins (SemB) form homodimers linked by intermolecular disulfide bridges. In addition to the 95-kDa form of SemD (SemD(95k)), proteolytic processing of SemD creates a 65-kDa isoform (SemD(65k)) that lacks the 33-kDa carboxyl-terminal domain. Although SemD(95k) formed dimers, the removal of the carboxyl-terminal domain resulted in the dissociation of SemD homodimers to monomeric SemD(65k). Mutation of cysteine 723, one of four conserved cysteine residues in the 33-kDa fragment, revealed its requirement both for the dimerization of SemD and its chemorepulsive activity. We suggest that dimerization is a general feature of sema- phorins which depends on class-specific sequences and is important for their function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号