首页 | 本学科首页   官方微博 | 高级检索  
     

辉钼矿回收率对水体磁化改性因素敏感性的BP神经网络研究
引用本文:张帅,田家怡,彭祥玉,王宇斌,赵鑫,桂婉婷. 辉钼矿回收率对水体磁化改性因素敏感性的BP神经网络研究[J]. 有色金属工程, 2023, 0(7): 69-74
作者姓名:张帅  田家怡  彭祥玉  王宇斌  赵鑫  桂婉婷
作者单位:西安建筑科技大学 资源工程学院,西安建筑科技大学 资源工程学院,西安建筑科技大学 资源工程学院,西安建筑科技大学 资源工程学院,西安建筑科技大学 资源工程学院,西安建筑科技大学 资源工程学院
基金项目:国家自然科学基金(51674184)
摘    要:为优化磁化水体系中辉钼矿回收指标,以正交实验的方法进行了辉钼矿单矿物浮选试验,并利用BP神经网络对辉钼矿回收率与水体磁化改性影响因素的敏感性关系进行分析。结果表明:浮选过程中辉钼矿回收率对不同磁化因素的敏感性由大到小依次为:电流频率、退磁时间、磁化时间、电流频率与磁化时间交互影响和电流频率与退磁时间交互影响。研究利用电流频率等三个主要影响因素,通过BP神经网络作为模型对辉钼矿的回收率进行预测,其拟合度与精度较好,拟合优度R^(2)为0.9704,相对平均误差仅为1.27%,该模型能较好地用于辉钼矿回收率的预测。研究对利用磁化水改善金属硫化矿浮选效果的工业应用有一定的参考意义。

关 键 词:BP神经网络  磁化水  影响因素  回收率
收稿时间:2023-02-20
修稿时间:2023-03-22

The sensitivity of molybdenite recovery to factors of water magnetization modification by BP neural network
ZHANG Shuai,TIAN Jiayi,PENG Xiangyu,WANG Yubin,ZHAO Xin and GUI Wanting. The sensitivity of molybdenite recovery to factors of water magnetization modification by BP neural network[J]. Nonferrous Metals Engineering, 2023, 0(7): 69-74
Authors:ZHANG Shuai  TIAN Jiayi  PENG Xiangyu  WANG Yubin  ZHAO Xin  GUI Wanting
Affiliation:School of Resource Engineering,Xi ''an University of Architecture and Technology,Xi ''an 710055;Shaanxi,China,School of Resource Engineering,Xi ''an University of Architecture and Technology,Xi ''an 710055;Shaanxi,China,School of Resource Engineering,Xi ''an University of Architecture and Technology,Xi ''an 710055;Shaanxi,China,School of Resource Engineering,Xi ''an University of Architecture and Technology,Xi ''an 710055;Shaanxi,China,School of Resource Engineering,Xi ''an University of Architecture and Technology,Xi ''an 710055;Shaanxi,China,School of Resource Engineering,Xi ''an University of Architecture and Technology,Xi ''an 710055;Shaanxi,China
Abstract:In order to optimize the recovery index of molybdenite in the magnetized water system, a single-mineral flotation test of molybdenite was conducted by orthogonal experiment, and the sensitivity relationship between the recovery of molybdenite and the influencing factors of magnetization modification in water was analyzed by BP neural network. The results showed that the sensitivity of molybdenite recovery to different magnetization factors during flotation was in descending order: current frequency, demagnetization time, magnetization time, interaction between current frequency and magnetization time, and interaction between current frequency and demagnetization time. The study used the three main influencing factors such as magnetic induction strength to predict the recovery of molybdenum by the BP neural network action model, which has a good fit and accuracy, with a good fit R2 of 0.9704 and a relative average error of only 1.27%, and the model can be better used for the prediction of the recovery of molybdenite. The study has some reference significance for the industrial application of using magnetized water to improve the flotation effect of metal sulfide ores.
Keywords:BP neural network   magnetized water   influencing factors   recovery
本文献已被 维普 等数据库收录!
点击此处可从《有色金属工程》浏览原始摘要信息
点击此处可从《有色金属工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号