首页 | 本学科首页   官方微博 | 高级检索  
     


One-step synthesis of the 3D flower-like heterostructure MoS2/CuS nanohybrid for electrocatalytic hydrogen evolution
Authors:Lilan Zhang  Yali Guo  Anam Iqbal  Bo Li  Deyan Gong  Wei Liu  Kanwal Iqbal  Weisheng Liu  Wenwu Qin
Affiliation:1. Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China;2. University of Balochistan Quetta, Pakistan;3. Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, PR China
Abstract:In this work, a facile one-step hydrothermal method was developed to fabricate three types different of nanomaterials: the two-dimension (2D) of MoS2 nanosheets; 3D spherical CuS nanoparticles; and 3D flower-like heterostructure of MoS2/CuS nanohybrid, respectively. The as-synthesized MoS2, CuS and MoS2/CuS were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM) and X-ray diffraction (XRD) etc. The morphology of the MoS2/CuS nanohybrid is different from the MoS2 nanosheets and CuS nanoparticles. The hydrogen evolution reaction (HER) activity of MoS2 nanosheets, CuS nanoparticles and MoS2/CuS nanohybrid, were investigated by the Linear Sweep Voltammetry (LSV) and Tafel slope. The HER activity of MoS2/CuS nanohybrid is better than those of MoS2 nanosheets and CuS nanoparticles, which can be attributed to the good electron-transport ability of CuS and the strong reduction ability of hydrogen ions by MoS2. Thus, MoS2/CuS nanohybrid exhibited excellent activity for HER with a small onset potential of 0.15 V, a low Tafel slope of 63 mV dec?1, and relatively good stability. However, the MoS2 nanosheets and CuS nanoparticles respectively shows a bigger onset potential of 0.25 V and 0.35 V, a higher Tafel slope of 165 and 185 mV dec?1. This 3D flower-like heterostructure of MoS2/CuS nanohybrid catalyst exhibits great potential for renewable energy applications.
Keywords:One step  Hydrothermal method  HER  High activity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号