首页 | 本学科首页   官方微博 | 高级检索  
     


Lagrangian relaxation and constraint generation for allocation and advanced scheduling
Authors:Yasin Gocgun
Affiliation:a Sauder School of Business, University of British Columbia, Vancouver, Canada
b Industrial and Systems Engineering, University of Washington, Seattle, USA
Abstract:Diverse applications in manufacturing, logistics, health care, telecommunications, and computing require that renewable resources be dynamically scheduled to handle distinct classes of job service requests arriving randomly over slotted time. These dynamic stochastic resource scheduling problems are analytically and computationally intractable even when the number of job classes is relatively small. In this paper, we formally introduce two types of problems called allocation and advanced scheduling, and formulate their Markov decision process (MDP) models. We establish that these MDPs are “weakly coupled” and exploit this structural property to develop an approximate dynamic programming method that uses Lagrangian relaxation and constraint generation to efficiently make good scheduling decisions. In fact, our method is presented for a general class of large-scale weakly coupled MDPs that we precisely define. Extensive computational experiments on hundreds of randomly generated test problems reveal that Lagrangian decisions outperform myopic decisions with a statistically significant margin. The relative benefit of Lagrangian decisions is much higher for advanced scheduling than for allocation scheduling.
Keywords:Approximate dynamic programming   Resource allocation   Scheduling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号