首页 | 本学科首页   官方微博 | 高级检索  
     

结合数学形态学和Level Set超声图像的分割方法
引用本文:曹彪,刘奇. 结合数学形态学和Level Set超声图像的分割方法[J]. 中国测试技术, 2007, 33(5): 114-117
作者姓名:曹彪  刘奇
作者单位:四川大学电气信息学院,四川,成都,610065
摘    要:针对噪声严重的超声图像,提出了一种结合数学形态学和Level Set的分割方法。首先采用全变差模型进行图像滤波,再通过交互式区域选择和数学形态学方法获得感兴趣目标的二值化图像,并把该二值化图像轮廓作为水平集方法的初始曲线。改进隐式测地活动轮廓模型(GAC)中的边缘检测函数,增强了处理弱边缘的能力。分割结果表明,该方法能够准确地提取出目标轮廓,同时减少了迭代次数和运算时间。

关 键 词:分割  全变差  数学形态学  水平集
文章编号:1672-4984(2007)05-0114-04
修稿时间:2007-03-17

Ultrasound image segmentation method based on mathematical morphology and Level Set
CAO Biao,LIU Qi. Ultrasound image segmentation method based on mathematical morphology and Level Set[J]. China Measurement Technology, 2007, 33(5): 114-117
Authors:CAO Biao  LIU Qi
Affiliation:School of Electrical Information, Sichuan University, Chengdu 610065, China
Abstract:A segmentation method based on mathematical morphology and level set was proposed for ultrasound images.First,the total variation model was utilized to filter the noisy ultrasound image,then the alternate region choosing and mathematical morphology method were used to obtain the binary image of the interesting object.The binary image was used as the initial curve of the level set method.The edge detection function of the implicit geodesic active contour model(GAC) was improved,and the weak edge detection was enhanced.The results show that the target contour can be accurately extracted.While the iterative and computation time is reduced.
Keywords:Segmentation  Total variation  Mathematical morphology  Level set
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号