首页 | 本学科首页   官方微博 | 高级检索  
     


Periodic solutions for a class of evolution inclusions
Authors:Nikolaos S. Papageorgiou  Vicenţiu D. Rădulescu  Dušan D. Repovš
Affiliation:1. National Technical University, Department of Mathematics, Zografou Campus, 15780 Athens, Greece;2. Faculty of Applied Mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;3. Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania;4. Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
Abstract:We consider a periodic evolution inclusion defined on an evolution triple of spaces. The inclusion involves also a subdifferential term. We prove existence theorems for both the convex and the nonconvex problem, and we also produce extremal trajectories. Moreover, we show that every solution of the convex problem can be approximated uniformly by certain extremal trajectories (strong relaxation). We illustrate our results by examining a nonlinear parabolic control system.
Keywords:Evolution triple  Extremal trajectories  Strong relaxation  Parabolic control system  Poincaré map
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号