首页 | 本学科首页   官方微博 | 高级检索  
     

高温冻土固化前后结构性变化对融化压缩特性影响
引用本文:孙杲辰,张建明,党迎生,张虎,丁聪,陈新. 高温冻土固化前后结构性变化对融化压缩特性影响[J]. 哈尔滨工业大学学报, 2020, 52(2): 17-25. DOI: 10.11918/201810121
作者姓名:孙杲辰  张建明  党迎生  张虎  丁聪  陈新
作者单位:冻土工程国家重点实验室(中国科学院西北生态环境资源研究院),兰州730000;中国科学院大学 工程科学学院,北京100049;中国市政工程西北设计研究院有限公司,兰州730000,冻土工程国家重点实验室(中国科学院西北生态环境资源研究院),兰州730000;中国科学院大学 工程科学学院,北京100049,石河子大学 水利与建筑工程学院,新疆 石河子832000,冻土工程国家重点实验室(中国科学院西北生态环境资源研究院),兰州730000;中国科学院大学 工程科学学院,北京100049,上海勘测设计研究院有限公司,上海200434,中国市政工程西北设计研究院有限公司,兰州730000
基金项目:国家自然科学基金(2,7);冻土工程国家重点试验室项目(SKLFSE-ZT-35)
摘    要:为解决高温冻土未冻水含量高、压缩性强对冻土路基造成的不良影响.以采自青藏高原粉质黏土为研究对象,从高温冻土的结构性出发,在负温环境下配置15%掺量的普通硅酸盐水泥、高性能硫铝酸盐以及普通硅酸盐水泥+高性能硫铝酸盐水泥的固化冻土试样,并通过烘干法、TDR技术、X射线衍射、扫描电镜与融化压缩试验,分析高温冻土固化前后土体总含水量、未冻水含量变化以及固化剂加入高温冻土后土体的物相成分,对比不同固化剂的固化效果,同时利用MATLAB编程开发CURVEEXTRACT图像分析系统对SEM图像进行预处理,将其导入Image-ProPlus6.0(IPP)软件中,对比分析高温冻土固化前后微观结构孔隙分布、形态以及定向性等特征.以土体孔隙定向性分维数与固化后压缩系数为桥梁,建立高温冻土固化后宏、微观之间的关系.结果表明,固化后土体总含水量减小,未冻水含量增多,由于固化剂产物的胶结作用,土颗粒整体呈现团聚状态,固化效果越好大颗粒越多,内部孔隙面积减小且孔隙由狭长状向等轴状转化,土体孔隙更加均匀化,土体孔隙定向性分维数Df与融化压缩系数av之间存在良好的线性关系,固化效果越好,土体孔隙定向性分维数Df越小,对应的压缩系数av越小.

关 键 词:高温冻土  固化剂  微观结构  分形理论  压缩性质
收稿时间:2018-10-23

Structural properties changes before and after solidification and their effects on melting and compression characteristics of high warm and frozen soil
SUN Gaochen,ZHANG Jianming,DANG Yingsheng,ZHANG Hu,DING Cong and CHEN Xin. Structural properties changes before and after solidification and their effects on melting and compression characteristics of high warm and frozen soil[J]. Journal of Harbin Institute of Technology, 2020, 52(2): 17-25. DOI: 10.11918/201810121
Authors:SUN Gaochen  ZHANG Jianming  DANG Yingsheng  ZHANG Hu  DING Cong  CHEN Xin
Affiliation:State Key Laboratory of Frozen Soil Engineering Northwest Institute of Eco-environment and Resources, CAS, Lanzhou 730000, China ;School of Engineering Science, University of Chinese Academy of Science, Beijing 100049, China ;China State Construction Engineering Corporation Aecom Consultant Co., Ltd., Lanzhou 730000, China,State Key Laboratory of Frozen Soil Engineering Northwest Institute of Eco-environment and Resources, CAS, Lanzhou 730000, China ;School of Engineering Science, University of Chinese Academy of Science, Beijing 100049, China,College of Water & Architectural Engineering, Shihezi University, Shihezi 832000, Xinjiang, China,State Key Laboratory of Frozen Soil Engineering Northwest Institute of Eco-environment and Resources, CAS, Lanzhou 730000, China ;School of Engineering Science, University of Chinese Academy of Science, Beijing 100049, China,Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200434, China and China State Construction Engineering Corporation Aecom Consultant Co., Ltd., Lanzhou 730000, China
Abstract:This paper aims to solve the negative effects of the large unfrozen water content and high compression of high warm and frozen soil on the stability of roadbed. In this study, by taking the silty clay in the permafrost regions of Qinghai-Tibet Plateau as the research object, 15% ordinary Portland cement, high-performance Sulphoaluminate cement, and (ordinary Portland cement+high-performance Sulphoaluminate cement) were prepared as samples at negative temperature. The oven drying method, TDR (time domain reflectometry) technique, X-ray diffraction, scanning electron microscopy (SEM), and thawing compression test were adopted to analyze changes of the total water content, changes of unfrozen water content, and the phase composition of the soil with the addition of soil stabilizers, as well as to compare the solidification effects of different soil stabilizers. MATLAB was used to develop CURVEEXTRACT image analysis system to deal with SEM image, which was then imported to the Image-ProPlus6.0 (IPP) software to analyze the characteristics of micro pore distribution, morphology, and directivity of high warm and frozen soil before and after solidification. The relationship between macroscopical and microcosmic before and after solidification was established based on the relationship between compression property and pore orientation fractal dimension. Results show that adding soil stabilizer could reduce the total water content and increase the unfrozen water content in the soil samples. After solidification, soil particles became closer, the pore area of the soil decreased, and the pore transformed from narrow to equiaxial. There was a good linear relationship between the pore directional fractal dimension (Df) and the coefficient of thaw compression (av). The better the curing effect was, the smaller the Df was, and the smaller the corresponding av was.
Keywords:high warm and frozen soil   soil stabilizer   microstructure   fractal theory   compression properties
本文献已被 万方数据 等数据库收录!
点击此处可从《哈尔滨工业大学学报》浏览原始摘要信息
点击此处可从《哈尔滨工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号