首页 | 本学科首页   官方微博 | 高级检索  
     

基于平稳小波的自适应阈值MR图像去噪法
引用本文:刘成云 陈振学 常发亮. 基于平稳小波的自适应阈值MR图像去噪法[J]. 山东大学学报(工学版), 2009, 39(5): 58-61
作者姓名:刘成云 陈振学 常发亮
作者单位:山东大学控制科学与工程学院, 山东 济南 250061
基金项目:国家自然科学基金资助项目(60975025);;山东省博士基金资助项目(2006B501012);;中国博士后科学基金面上资助项目(20080441123);;山东省博士后创新专项基金资助项目(200802017)
摘    要:针对小波空间Donoho阈值在图像去噪中的缺陷,提出一种基于平稳小波变换的自适应阈值MR图像去噪方法,即由 Lakhwinder Kaur小波阈值选取法,根据不同的子带特性,定义了一个新的尺度参数方程,以确定适合各个尺度级的自适应最优阈值,对平稳小波变换后的各层细节信号分别进行阈值化处理.该方法能很好的抑制小波空间Donoho阈值去噪法出现的伪Gibbs现象,弥补了正交小波变换存在的不足,在滤出噪声的同时,较好地保留了MR图像的细节信息.实验结果表明该算法在性能指标和视觉质量上的优越性.

关 键 词:正交小波变换  自适应阈值  MR图像去噪  平稳小波变换,
收稿时间:2008-11-09

Self-adaptive threshold method of MR image denoising based on stationary wavelet transformation
LIU Cheng-yun,CHEN Zhen-xue,CHANG Fa-liang. Self-adaptive threshold method of MR image denoising based on stationary wavelet transformation[J]. Journal of Shandong University of Technology, 2009, 39(5): 58-61
Authors:LIU Cheng-yun  CHEN Zhen-xue  CHANG Fa-liang
Affiliation:School of Control Science and Engineering;Shangdong University;Jinan 250061;China
Abstract:To overcome the defect of image denoising based on Donoho’s threshold of wavelet domain, a self-adaptive method for image denoising based on stationary wavelet transformation was proposed. According to different subband characteristics, a new scale parameter equation was defined todetermine the optimal thresholds adapting to each step scale, and the thresholds of the detail signals of each level generated by stationary wavelet transformation were obtained.The method not only well depresses the Gibbs impact well, but also supplies a gap of orthogonal wavelet transformation so as to retain the MR image details when wiping offnoise. Experimental results indicate that the proposed method is more effective than discrete orthogonal wavelet transformation with respect to performance and visual effect.
Keywords:orthogonal wavelet transform  self-adaptive threshold  MR image denoising  stationary wavelet transform  
本文献已被 CNKI 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号