One‐Pot Fabrication of Poly(ε‐Caprolactone)‐Incorporated Bovine Serum Albumin/Calcium Alginate/Hydroxyapatite Nanocomposite Scaffolds by High Internal Phase Emulsion Templates
Abstract:
In this work, the authors report an effective one‐pot method to prepare poly(ε‐caprolactone) (PCL)‐incorporated bovine serum albumin (BSA)/calcium alginate/hydroxyapatite (HAp) nanocomposite (NC) scaffolds by templating oil‐in‐water high internal phase emulsion (HIPE), which includes alginate, BSA, and HAp in water phase and PCL in oil phase. The water phase of HIPEs is solidified to form hydrogels containing emulsion droplets via gelation of alginate induced by Ca2+ ions released from HAp. And the prepared hydrogels are freeze‐dried to obtain PCL‐incorporated porous scaffolds. The obtained scaffolds possess interconnected pore structures. Increasing PCL concentration clearly enhances the compressive property and BSA stability, decreases the swelling ratio of scaffolds, which assists in improving the scaffold stability. The anti‐inflammatory drug ibuprofen can be highly efficiently loaded into scaffolds and released in a sustained rate. Furthermore, mouse bone mesenchymal stem cells can successfully proliferate on the scaffolds, proving the biocompatibility of scaffolds. All results show that the PCL‐incorporated NC scaffolds possess promising potentials in tissue engineering application.