首页 | 本学科首页   官方微博 | 高级检索  
     

基于双层网络的混合PSO算法的RBF建模
引用本文:胡斌,王敬志,刘鹏. 基于双层网络的混合PSO算法的RBF建模[J]. 四川建材学院学报, 2011, 0(2): 78-81
作者姓名:胡斌  王敬志  刘鹏
作者单位:重庆通信学院,重庆400035
摘    要:针对RBF网络的建模问题,设计了基于双层网络的建模方法。第一层网络采用随机方法确定了隐层单元数,并利用并行PSO算法对网络进行初步训练,第二层网络采用了主从粒子群的方式,借鉴了遗传交叉的思想,对第一个网络的最优解进行了再训练以提高网络的训练精度。从对非线性系统的仿真结果看,该方法最终确定的隐层单元数比较少,与RBF网络相比有着一定的优越性,而且优于单层并行PSO算法的RBF网络。

关 键 词:RBF  双层网络  非线性  PSO算法

Double-layer Network Modeling Based on Mixed Particle Swarm Optimization
HU Bin,WANG Jing-zhi,LIU Peng. Double-layer Network Modeling Based on Mixed Particle Swarm Optimization[J]. , 2011, 0(2): 78-81
Authors:HU Bin  WANG Jing-zhi  LIU Peng
Affiliation:(Chongqing Communication College, Chongqing 400035, China)
Abstract:To sovle the modeling problem of RBF network, double-layer network is designed. First of all, the first layer of the network derermine the number of hidden units by using a random method, and the network is trained initially by using parallel PSO algorithm; and then to improve the accuracy of network training, the second layer of the network using master and secondary particle swarm algorithm and the method of genetic crossover on the optimal solution of the first network is re-trained. From the simulation results of the nonlinear system to see that the method ultimately determine the number of hidden units is relatively small, compared with the RBF it has some advantages, and moreover is better than the parallel PSO based on single RBF network.
Keywords:RBF  Double-layer network  Non-linear  PSO algorithm
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号