首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of a fiber-network microstructure of paper-structured catalyst on methanol reforming behavior
Authors:Hirotaka Koga  Takuya Kitaoka  Mitsuyoshi Nakamura  Hiroyuki Wariishi
Affiliation:1. Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581, Japan
2. R&D Division, F.C.C. Co. Ltd, Nakagawa 7000-46, Hosoe-cho, Kita-ku, Hamamatsu, Shizuoka, 431-1304, Japan
Abstract:A novel microstructured catalyst that consists of Cu/ZnO catalyst powders and ceramic fibers was successfully prepared using pulp fibers as a tentative matrix by a papermaking technique. As-prepared material, called a paper-structured catalyst, possessed porous microstructure with layered ceramic fiber networks (average pore size ca. 20 μm, porosity ca. 50%). In the process of methanol autothermal reforming (ATR) to produce hydrogen, paper-structured catalysts demonstrated both high methanol conversion and low concentration of undesirable carbon monoxide as compared with catalyst powders and pellets. The catalytic performance of paper-structured catalysts depended on the use of pulp fibers, which were added in the paper-forming process and finally removed by thermal treatment before ATR performance tests. Confocal laser scanning microscopy and mercury intrusion analysis suggested that the tentative pulp fiber matrix played a significant role in regulating the fiber-network microstructure inside paper composites. Various metallic filters with different average pore sizes, used as supports for Cu/ZnO catalysts, were subjected to ATR performance tests for elucidating the pore effects. The tests indicated that the pore sizes of catalyst support had critical effects on the catalytic efficiency: the maximum hydrogen production was achieved by metallic filters with an average pore size of 20 μm. These results suggested that the paper-specific microstructures contributed to form a suitable catalytic reaction environment, possibly by promoting efficient diffusion of heat and reactants. The paper-structured catalyst with a regular pore microstructure is expected to be a promising catalytic material to provide both practical utility and high efficiency in the catalytic gas-reforming process.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号