首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient removal of boundary-divergence errors in time-splitting methods
Authors:A G Tomboulides  M Israeli  G E Karniadakis
Affiliation:(1) Mechanical and Aerospace Engineering, Princeton University, 08544 Princeton, New Jersey;(2) Present address: Department of Computer Science, Technion University, Haifa, Israel
Abstract:A normal mode analysis is presented and numerical tests are performed to assess the effectiveness of a new time-splitting algorithm proposed recently in Karniadakiset al. (1990) for solving the incompressible Navier-Stokes equations. This new algorithm employs high-order explicit pressure boundary conditions and mixed explicit/implicit stiffly stable time-integration schemes, which can lead to arbitrarily high-order accuracy in time. In the current article we investigate both the time accuracy of the new scheme as well as the corresponding reduction in boundary-divergence errors for two model flow problems involving solid boundaries. The main finding is that time discretization errors, induced by the nondivergent splitting mode, scale with the order of the accuracy of the integration rule employed if a proper rotational form of the pressure boundary condition is used; otherwise a first-order accuracy in time similar to the classical splitting methods is achieved. In the former case the corresponding errors in divergence can be completely eliminated, while in the latter case they scale asO(vDeltat)1/2.
Keywords:Splitting methods  normal mode analysis  incompressible flow
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号