首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应AR模型的核电站松动件报警方法
引用本文:杨将新,郑华文,曹衍龙,方力先,谢永诚,沈小要. 基于自适应AR模型的核电站松动件报警方法[J]. 原子能科学技术, 2010, 44(6): 701-705. DOI: 10.7538/yzk.2010.44.06.0701
作者姓名:杨将新  郑华文  曹衍龙  方力先  谢永诚  沈小要
作者单位:1.浙江大学 ;机械工程学系 ;现代制造工程研究所,浙江 ;杭州310027;2.杭州电子科技大学,浙江 ;杭州310018;3.上海核工程研究设计院,上海200233
基金项目:国家高技术研究发展计划资助项目 
摘    要:为能快速准确地检测到核电站一回路零部件的松动或脱落,提出1种基于自适应AR(auto-regressive)模型的松动件报警方法。该方法利用自适应AR模型跟踪一回路中背景噪声的变化,先对信号进行白化处理,再计算白化后信号的短时均方根(RMS),设置RMS动态阈值实现报警。采用秦山核电站一号机组背景噪声和松动件碰撞信号叠加进行了仿真试验,结果表明,该方法能够在低信噪比和噪声复杂变化的条件下快速检测出松动件碰撞信号。

关 键 词:自适应AR模型   松动件   报警

Alarming Method of Loose Parts in Nuclear Power Plant Based on Adaptive Auto-regressive Model
YANG Jiang-xin,ZHENG Hua-wen,CAO Yan-long,FANG Li-xian,XIE Yong-cheng,SHEN Xiao-yao. Alarming Method of Loose Parts in Nuclear Power Plant Based on Adaptive Auto-regressive Model[J]. Atomic Energy Science and Technology, 2010, 44(6): 701-705. DOI: 10.7538/yzk.2010.44.06.0701
Authors:YANG Jiang-xin  ZHENG Hua-wen  CAO Yan-long  FANG Li-xian  XIE Yong-cheng  SHEN Xiao-yao
Affiliation:1.Institute of Manufacturing Engineering, Zhejiang University, Hangzhou 310027,China;2.Hangzhou Dianzi University, Hangzhou 310018, China;3.Shanghai Nuclear Engineering Research & Design Institute, Shanghai 200233, China
Abstract:In order to rapidly and accurately detect loose parts in the nuclear power plant, an alarming method for detecting the loose parts based on adaptive auto-regressive (AR) model was presented. Use of adaptive AR model tracks the change of background noise and then whitens the signal, thereby enhancing the SNR (signal to noise ratio), and then calculating the RMS of the whitened signal and according dynamic threshold to alarm. Tests were taken by the use of impact signal and noise of Qinshan Nuclear Power Plant. The test results show that the impact signal can be fast detected by using the method when the SNR is low and the noise changes over time.
Keywords:adaptive AR model  loose parts  alarm
本文献已被 万方数据 等数据库收录!
点击此处可从《原子能科学技术》浏览原始摘要信息
点击此处可从《原子能科学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号