首页 | 本学科首页   官方微博 | 高级检索  
     


A proof of the Gilbert-Pollak conjecture on the Steiner ratio
Authors:D. -Z. Du and F. K. Hwang
Affiliation:(1) Department of Computer Science, Princeton University, USA;(2) DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, USA;(3) Institute of Applied Mathematics, Academia Sinica, Beijing, China;(4) AT&T Bell Laboratories, 07974 Murray Hill, NJ, USA
Abstract:LetP be a set ofn points on the euclidean plane. LetLs(P) andLm(P) denote the lengths of the Steiner minimum tree and the minimum spanning tree onP, respectively. In 1968, Gilbert and Pollak conjectured that for anyP,Ls(P)ge(radic3/2)Lm(P). We provide a proof for their conjecture in this paper.supported by NSF under grant STC88-09648.supported in part by the National Natural Science Foundation of China.
Keywords:Steiner trees  Spanning trees  Steiner ratio  Convexity  Hexagonal trees
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号