首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation in presence of urushiol and properties of acrylate latex with interparticle bridges
Authors:Jianhong Yang  Qin Shen  Fengqin Shen  Jun Cai  Wanghui Liu  Ming Zhou
Affiliation:1.School of Environmental and Safety Engineering,Changzhou University,Changzhou,China;2.Key Laboratory of Fermentation Engineering (Ministry of Education),Hubei University of Technology,Wuhan,China;3.Changzhou Liu Guojun Vocational Technology College,Changzhou,China
Abstract:Acrylate latices were prepared by seeded emulsion polymerization of methyl methacrylate (MMA) and butyl acrylate (BA) in presence of urushiol with multifunctional groups (0–6 wt%). The emulsion polymerization was strongly influenced by the urushiol content. With increasing urushiol content, the conversion rate of the monomers first increased then decreased, the stability of emulsion polymerization gradually declined, the average particle size of the latex increased from 115.9 to 175.3 nm, and a change from mono- to bimodal particle size distribution occurred. Interestingly, transmission electron microscopy (TEM) showed that some particles were connected by linear bridges in presence of urushiol. Based on results of 1H nuclear magnetic resonance (NMR) analysis, such formation of interparticle bridges is due to participation of urushiol in the emulsion polymerization of the acrylate monomers. The content of urushiol also affected the properties of latex films. With increasing urushiol content from 0 to 3 wt%, the adhesion, pencil hardness, and contact angle were markedly improved from grade 6 to grade 2, from B to 3H, and from 22° to 61°, respectively, due to formation of interparticle bridges. When the content of urushiol exceeded 3 wt%, the adhesion and pencil hardness remained unchanged, but the water contact angle markedly declined because of higher surface roughness of the latex film. Furthermore, addition of urushiol enhanced the thermal stability of the latex films.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号