首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的旋转机械故障诊断方法融合
引用本文:刘占生,窦唯,王东华,王晓伟. 基于遗传算法的旋转机械故障诊断方法融合[J]. 机械工程学报, 2007, 43(10): 227-233
作者姓名:刘占生  窦唯  王东华  王晓伟
作者单位:哈尔滨工业大学能源科学与工程学院,哈尔滨,150001;哈尔滨工业大学能源科学与工程学院,哈尔滨,150001;哈尔滨工业大学能源科学与工程学院,哈尔滨,150001;哈尔滨工业大学能源科学与工程学院,哈尔滨,150001
摘    要:针对任何单一性质故障特征、单一诊断方法难以实现在整个故障状态空间上准确诊断的局限性,提出基于遗传算法的旋转机械融合诊断方法。该方法能有效利用各种不同性质故障特征和不同诊断方法,使其发挥各自的优点,从而提高诊断的准确率。针对不同特征利用遗传算法将神经网络诊断和人工免疫诊断方法融合起来,使每一个诊断方法都在其优势空间区域发挥作用,使用小波包能量特征和双谱特征对两种诊断方法训练后,用遗传算法优化诊断融合权值矩阵对旋转机械进行实例诊断结果表明,该融合诊断方法能有效地提高故障诊断的准确率,并能提高诊断系统的鲁棒性。

关 键 词:遗传算法  融合诊断  旋转机械  人工免疫
修稿时间:2006-12-22

ROTATING MACHINERY FAULT DIAGNOSIS COMBINATION OF METHOD BASED ON GENETIC ALGORITHM
LIU Zhansheng,DOU Wei,WANG Donghua,WANG Xiaowei. ROTATING MACHINERY FAULT DIAGNOSIS COMBINATION OF METHOD BASED ON GENETIC ALGORITHM[J]. Chinese Journal of Mechanical Engineering, 2007, 43(10): 227-233
Authors:LIU Zhansheng  DOU Wei  WANG Donghua  WANG Xiaowei
Affiliation:School of Energy Science and Engineering, Harbin Institute of Technology
Abstract:The combination of fault diagnosis methods based on genetic algorithm for rotating machinery is presented,as there exists limitoess for any single fault feature,any single diagnosis method to achieve the accurate diagnosis needs the whole diagnosis state area.This method can effectively use diversified different fault character and diagnosis methods that can present their advantage respectively,so that the diagnosis accuracy is improved.Neural network diagnosis method and artificial immune system diagnosis method are combined by using genetic algorithm.Two different characters,Wavelet Packet"energy"character and Bispectrum character,are used.After training the two fault diagnosis methods,the genetic algorithm is used to optimize diagnosis combination weight matrix.It is demonstrated from the diagnosis example of rotating machinery that the combination diagnosis method can improve the accuracy rate and diagnosis system robust quality effectively.
Keywords:Genetic algorithm  Combination diagnosis  Rotating machinery  Artificial immune system
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《机械工程学报》浏览原始摘要信息
点击此处可从《机械工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号