首页 | 本学科首页   官方微博 | 高级检索  
     

基于蜂群K-means聚类模型的协同过滤推荐算法
引用本文:李艳娟,牛梦婷,李林辉. 基于蜂群K-means聚类模型的协同过滤推荐算法[J]. 计算机工程与科学, 2019, 41(6): 1101-1109
作者姓名:李艳娟  牛梦婷  李林辉
作者单位:东北林业大学信息与计算机工程学院,黑龙江 哈尔滨,150040;东北林业大学信息与计算机工程学院,黑龙江 哈尔滨,150040;东北林业大学信息与计算机工程学院,黑龙江 哈尔滨,150040
基金项目:国家自然科学基金(61300098);中央高校基本科研业务费专项基金(2572017CB33)
摘    要:针对目前协同过滤推荐算法的推荐质量和推荐效率低的问题,提出了一种基于改进蜂群K-means聚类模型的协同过滤推荐算法。首先,根据用户属性信息,采用改进蜂群K-means算法对用户进行聚类,建立用户聚类模型;然后,计算目标用户与用户聚类模型中各聚类中心的距离,其中距离最近的类为目标用户的检索空间;最后,从检索空间中依据用户-项目评分矩阵通过相似度计算搜索目标用户的最近邻居,由最近邻居的信息产生推荐列表。实验结果表明,该算法降低了平均绝对误差值,缩短了运行时间,提高了推荐质量和推荐效率。

关 键 词:协同过滤  用户聚类  推荐系统  蜂群算法
收稿时间:2018-08-13
修稿时间:2019-06-25

A collaborative filtering recommendation algorithmbased on a bee colony K-means clustering model
LI Yan juan,NIU Meng ting,LI Lin hui. A collaborative filtering recommendation algorithmbased on a bee colony K-means clustering model[J]. Computer Engineering & Science, 2019, 41(6): 1101-1109
Authors:LI Yan juan  NIU Meng ting  LI Lin hui
Affiliation:(School of Information and Computer Engineering,Northeast Forestry University,Harbin 150040,China)
Abstract:To address the problem of low recommendation quality and low recommendation efficiency of current collaborative filtering recommendation algorithms, we propose a collaborative filtering recommendation algorithm based on an improved bee colony K-means clustering model. Firstly, based on user attribute information, the algorithm uses the improved bee colony K-means algorithm to cluster users and establish a user clustering model. Secondly, we calculate the distance between target users and the clustering center in the user clustering model, and the cluster with the minimal distance is taken as the retrieval space of active users. Finally, we search the nearest neighbor of the target user by the similarity calculation according to the user item scoring matrix, and generate a recommendation list via the information of the nearest neighbor. Experimental results show that the proposed algorithm can achieve lower MAE and shorter running time, and it can enhance the quality and efficiency of recommendation.
Keywords:collaborative filtering  user clustering  recommendation system  bee colony algorithm  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号