首页 | 本学科首页   官方微博 | 高级检索  
     


Machine-component cell formation in group technology: a neural network approach
Authors:SHASHIDHAR KAPARTHI  NALLAN C. SURESH
Affiliation:School of Management, State University of New York , Buffalo , NY , 14260 , USA
Abstract:This paper presents a neural network clustering method for the part-machine grouping problem in group technology. Among the several neural networks, a Carpenter-Grossberg network is selected due to the fact that this clustering method utilizes binary-valued inputs and it can be trained without supervision. It is shown that this adaptive leader algorithm offers the capability of handling large, industry-size data sets due to the computational efficiency. The algorithm was tested on three data sets from prior literature, and solutions obtained were found to result in block diagonal forms. Some solutions were also found to be identical to solutions presented by others. Experiments on larger data sets, involving 10000 parts by 100 machine types, revealed that the method results in the identification of clusters with fast execution times. If a block diagonal structure existed in the input data, it was identified to a good degree of perfection. It was also found to be efficient with some imperfections in the data
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号