首页 | 本学科首页   官方微博 | 高级检索  
     

基于聚类标签均值的半监督支持向量机
引用本文:田勋,汪西莉. 基于聚类标签均值的半监督支持向量机[J]. 计算机工程与科学, 2018, 40(12): 2265-2272
作者姓名:田勋  汪西莉
基金项目:国家自然科学基金(41171338,41471280)
摘    要:针对标签均值半监督支持向量机在图像分类中随机选取无标记样本会导致分类正确率不高,以及算法的稳定性较低的问题,提出了基于聚类标签均值的半监督支持向量机算法。该算法修改了原算法对于无标记样本的惩罚项,对选取的无标记样本聚类,使用聚类标签均值替换标签均值。实验结果表明,使用聚类标签均值训练的分类器大大减少了背景与目标的错分情况,提高了分类的正确率以及算法的稳定性,适合用于图像分类。

关 键 词:半监督支持向量机  标签均值  聚类标签均值  图像分类  
收稿时间:2016-09-05
修稿时间:2018-12-25

Semi-supervised support vector machinebased on clustering label mean
TIAN Xun,WANG Xi li. Semi-supervised support vector machinebased on clustering label mean[J]. Computer Engineering & Science, 2018, 40(12): 2265-2272
Authors:TIAN Xun  WANG Xi li
Affiliation:(School of Computer Science,Shaanxi Normal University,Xi’an 710062,China)
Abstract:Semi-supervised support vector machine (S3VM) based on label mean can lead to low classification accuracy and unstable results due to random selection of unlabeled samples. In order to deal with the problems, we propose a semi supervised support vector machine based on clustering label mean. This method modifies the penalty terms of the original algorithm for unlabeled samples, clusters unlabeled samples and replaces label mean with clustering label mean. Experimental results indicate that the proposed method greatly reduces the misclassification of background and objectives, improves the stability and classification accuracy of the algorithm, and it is suitable for image classification.
Keywords:semi-supervised support vector machine (S3VM)  label mean  clustering label mean  image classification  
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号