首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于小波包变换加权自相关的基音检测算法
引用本文:孙婷婷,章小兵. 一种基于小波包变换加权自相关的基音检测算法[J]. 计算机工程与科学, 2017, 39(8): 1525-1529
作者姓名:孙婷婷  章小兵
作者单位:;1.安徽工业大学电气与信息学院
基金项目:安徽工业大学重大产学研项目(RD14206003)
摘    要:噪声环境下的基音检测在语音信号处理中占有重要地位。为了有效提取低信噪比情况下的语音基音周期,提出了一种基于小波包变换加权线性预测自相关的检测方法。该方法首先利用小波包自适应阈值消除噪声,将多级小波包变换的近似分量求和以突出基音信息,并采用小波包系数加权线性预测误差自相关的方法突出基音周期处的峰值,提高了基音周期检测的精度。实验结果表明,与传统的自相关法、小波加权自相关法相比,该方法鲁棒性好,基音轨迹平滑,具有更高的准确性,即使在信噪比为-5dB时仍能取得较为理想的结果。

关 键 词:基音检测  小波包变换  线性预测误差  自相关函数
收稿时间:2015-12-14
修稿时间:2017-08-25

A weighted autocorrelation method for pitchdetection based on wavelet packet transform
SUN Ting-ting,ZHANG Xiao-bing. A weighted autocorrelation method for pitchdetection based on wavelet packet transform[J]. Computer Engineering & Science, 2017, 39(8): 1525-1529
Authors:SUN Ting-ting  ZHANG Xiao-bing
Affiliation:(School of Electrical and Information Engineering,Anhui University of Technology,Maanshan 243000,China)
Abstract:Pitch detection in a noisy environment plays an important role in speech signal processing. In order to effectively extract the pitch period in low signal to noise ratio (SNR), we propose a weighted auto correlation method based on wavelet packet transform. We employ the wavelet packet adaptive threshold to eliminate noise signals, and use the summation of approximate components after wavelet packet transform to emphasize the pitch information. Then we use the method of linear prediction error autocorrelation function weighted by wavelet packet coefficients to emphasize the peak of the true pitch period. Compared with the traditional methods based on autocorrelation function or wavelet-weighted, the experiments show that the proposed pitch extraction method has higher accuracy and smoother trajectory of pitch period. Moreover, it is robust when the SNR is -5dB.
Keywords:pitch detection  wavelet packet transform  linear prediction error;auto correlation function  
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号