首页 | 本学科首页   官方微博 | 高级检索  
     

基于分布式遗传算法的水质传感器布置优化研究
引用本文:李进生,蒙江,童名文. 基于分布式遗传算法的水质传感器布置优化研究[J]. 计算机工程与科学, 2019, 41(3): 545-550
作者姓名:李进生  蒙江  童名文
作者单位:华中师范大学教育信息技术学院,湖北武汉,430079;华中师范大学教育信息技术学院,湖北武汉,430079;华中师范大学教育信息技术学院,湖北武汉,430079
基金项目:教育部人文社科基金(15YJA880062)
摘    要:水质传感器优化布置是指在城镇配水管网中最优位置布置水质传感器对污染物进行检测,从而达到监测预警的目的,其本质是一类大规模离散组合优化问题。首先从数学上对该问题进行分析,论证了其具有NP-Complete特性;然后针对该问题计算开销大等特点,提出了基于Spark云计算模型的分布式遗传算法;最后以一个典型的复杂配水管网为对象进行实验,仿真结果表明,所提出的算法不仅具有搜索速度快、精度高等优点,而且还具有较好的线性加速比。

关 键 词:分布式遗传算法  水质传感器布置  云计算  大规模离散组合优化
收稿时间:2018-03-26
修稿时间:2019-03-25

Water quality sensor placement optimizationbased on distributed genetic algorithm
LI Jin sheng,MENG Jiang,TONG Ming wen. Water quality sensor placement optimizationbased on distributed genetic algorithm[J]. Computer Engineering & Science, 2019, 41(3): 545-550
Authors:LI Jin sheng  MENG Jiang  TONG Ming wen
Affiliation:(School of Educational Information Technology,Central China Normal University,Wuhan 430079,China)
Abstract:Water quality sensor placement optimization refers to deploying sensor networks at optimal locations in the water distribution system so as to detect the contaminant, thus monitoring and making early warning once pollution occurs. This problem is a large scale discrete combination optimization problem in essence. We firstly analyze the problem from the perspective of mathematic theory, and prove that the problem is NP-complete. Secondly, aiming at the huge computation overhead, we propose a distributed genetic algorithm based on the Spark cloud computing model to solve the problem. Finally, experiments on a typical complex water distribution network show that the proposed algorithm has fast search speed with high accuracy, as well as a high linear speedup.
Keywords:distributed genetic algorithm  water quality sensor placement  cloud computing  large-scale discrete combination optimization  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号