首页 | 本学科首页   官方微博 | 高级检索  
     

基于异构计算的三维FDTD并行算法及其在电磁仿真中的应用
引用本文:周兰花,付彬,李仁发,刘新忠,黄晶. 基于异构计算的三维FDTD并行算法及其在电磁仿真中的应用[J]. 计算机工程与科学, 2017, 39(7): 1241-1248
作者姓名:周兰花  付彬  李仁发  刘新忠  黄晶
作者单位:(1.湖南大学信息科学与工程学院,湖南 长沙 410082;2.近地空间电磁环境监测与建模重点实验室(长沙理工大学),湖南 长沙 410114)
基金项目:国家863计划(2012AA01A301-01);长沙理工大学近地空间电磁环境监测与建模湖南省普通高校重点实验室开放基金(20150105)
摘    要:时域有限差分(FDTD)法是求解电磁学中麦克斯韦方程组的重要方法之一,一直以来获得了广泛的使用,但是应用于电大尺寸目标仿真时存在巨大的耗时问题。为解决这一问题,利用图形处理器(GPU)的并行处理特性,结合计算统一设备架构(CUDA),以低通滤波器为算例,实现了时域卷积理想匹配层(CPML)吸收边界的三维FDTD高性能加速计算,目标网格数达5百万。实验在Fermi架构的Quadro 4000和Tesla M2050两款GPU上实测,误差均在10~(-4)范围内,相对于同时期的CPU分别可获得36和55倍以上的加速,结果表明该方法具有精度高、效率高、通用性和实用性强等特点。

关 键 词:计算电磁学  FDTD  异构计算  计算统一设备架构
收稿时间:2015-12-21
修稿时间:2017-07-25

A 3D FDTD parallel algorithm based on heterogeneouscomputing and its application in electromagnetic simulation
ZHOU Lan-hua,FU Bin,Li Ren-fa,LIU Xin-zhong,HUANG Jing. A 3D FDTD parallel algorithm based on heterogeneouscomputing and its application in electromagnetic simulation[J]. Computer Engineering & Science, 2017, 39(7): 1241-1248
Authors:ZHOU Lan-hua  FU Bin  Li Ren-fa  LIU Xin-zhong  HUANG Jing
Affiliation:(1.School of Information Science and Engineering,Hunan University,Changsha 410082;2.Laboratory for Electromagnetic Environment Monitoring and Modeling of Near Earth Space,Changsha 410114,China)
Abstract:The finite difference time domain (FDTD) method is one of the important methods for solving Maxwell’s equations in electromagnetics, and it is widely used. But it is time consuming when applied to the simulation of electrically large targets. In order to solve this problem, we take advantage of the parallel processing capacity of the graphics processor unit (GPU) together with the compute unified device architecture (CUDA). Taking a low pass filter as an example and using five million targeting grids, we realize three-dimensional FDTD high performance speed calculation with time-domain convolution perfectly matched layer (CPML) absorbing boundary. Experiments are carried out on the Quadro 4000 and Tesla M2050 GPUs with the Fermi architecture, whose error rate is within the range of 10-4, and can obtain 36 and 55 times faster speed than the CPU of the same period. The results show that the method has the characteristics of high precision, high efficiency, versatility and strong practicability.
Keywords:computational electromagnetics  FDTD  heterogeneous computing  CUDA  
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号