首页 | 本学科首页   官方微博 | 高级检索  
     

基于光流计算的异常拥挤行为检测算法
引用本文:邹铮,闫玮,谢剑斌,刘通,李沛秦. 基于光流计算的异常拥挤行为检测算法[J]. 计算机工程与科学, 2017, 39(8): 1465-1470
作者姓名:邹铮  闫玮  谢剑斌  刘通  李沛秦
作者单位:(国防科技大学电子科学与工程学院,湖南 长沙 410073)
摘    要:面向人群场景中异常拥挤行为检测,提出基于光流计算的检测方法。该方法首先采用光流微粒矢量场提取人群运动特征;然后基于社会力模型计算光流微粒之间的相互作用力;最后对相互作用力进行直方图熵值处理来实现人群行为判别。仿真实验表明,本算法可以区分人群场景中异常区域内相互作用力的大小,对异常拥挤行为进行判别和定位。

关 键 词:光流计算  拥挤行为  社会力模型  直方图统计  
收稿时间:2016-01-07
修稿时间:2017-08-25

Abnormal crowd behavior detectionbased on optical flow computation
ZOU Zheng,YAN Wei,XIE Jian-bin,LIU Tong,LI Pei-qin. Abnormal crowd behavior detectionbased on optical flow computation[J]. Computer Engineering & Science, 2017, 39(8): 1465-1470
Authors:ZOU Zheng  YAN Wei  XIE Jian-bin  LIU Tong  LI Pei-qin
Affiliation:(College of Electronic Science and Engineering,National University of Defense Technology,Changsha 410073,China) 
Abstract:We propose a detection method based on optical flow to detect the abnormal crowded behavior in a crowd scene. In this method, the motion characteristics of the crowd are extracted by using the optical flow vector field. Then the interaction force between the particles is calculated based on the social force model. Finally, we implement histogram entropy discrimination process on the interaction force to achieve the discrimination of crowd behavior. Simulation results show that the algorithm can distinguish the size of the interaction force in abnormal regions in the crowd scene, identify and locate the abnormal congestion.
Keywords:optical flow computation  crowd behavior  social-force model  histogram statistics  entropy  
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号