首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度自编码网络模型的风电机组齿轮箱故障检测
引用本文:刘辉海,赵星宇,赵洪山,宋鹏,邓春. 基于深度自编码网络模型的风电机组齿轮箱故障检测[J]. 电工技术学报, 2017, 32(17). DOI: 10.19595/j.cnki.1000-6753.tces.161746
作者姓名:刘辉海  赵星宇  赵洪山  宋鹏  邓春
作者单位:1. 华北电力大学电气与电子工程学院 保定 071003;2. 中国科学院大学物理科学学院 北京 110116;3. 国网冀北电力有限公司电力科学研究院 北京 100045
基金项目:国家科技支撑计划项目资助
摘    要:为了实现风机齿轮箱的故障检测分析,提出一种基于风电机组齿轮箱的数据采集与监视控制(SCADA)数据和振动信号的深度自编码网络模型。该模型作为一种典型的深度学习方法,通过逐层智能学习初始样本特征,可以获取数据蕴含的规则与分布特征形成更加抽象的高层表示。首先,利用限制性玻尔兹曼机对网络参数进行预训练和反向传播算法对参数进行调优,建立深度自编码网络模型。然后,通过对齿轮箱的状态变量进行编码和解码,计算重构误差并将其作为齿轮箱的状态检测量。为了有效检测重构误差的趋势变化,选用自适应阈值作为风机齿轮箱故障检测的决策准则。最后,利用对齿轮箱故障前、后记录的数据进行仿真分析,结果验证了深度自编码网络学习方法对齿轮箱故障检测的有效性。

关 键 词:风电机组  齿轮箱  故障检测  深度自编码网络  自适应阈值

Fault Detection of Wind Turbine Gearbox Based on Deep Autoencoder Network
Liu Huihai,Zhao Xingyu,Zhao Hongshan,Song Peng,Deng Chun. Fault Detection of Wind Turbine Gearbox Based on Deep Autoencoder Network[J]. Transactions of China Electrotechnical Society, 2017, 32(17). DOI: 10.19595/j.cnki.1000-6753.tces.161746
Authors:Liu Huihai  Zhao Xingyu  Zhao Hongshan  Song Peng  Deng Chun
Abstract:In order to achieve the fault detection of wind turbine gearbox,a deep autoencoder network model from deep learning method based on supervisory control and data acquisition (SCADA) data and vibration signals of wind turbine gearbox is proposed in this paper.The deep autoencoder network,as one of the typical deep learning methods,can obtain the underlying rules and distribution characteristics of the data through learning features of original sample by layer-wise intelligent learning to form a more abstract and high-level representation.Firstly,restricted boltzmann machine was used to pre-train parameters and the back-propagation algorithm was used to optimize these parameters to build the deep autoencoder model in this paper.Then through encoding and decoding condition variables of gearbox,reconstruction error was computed as the gearbox condition monitoring variable.In order to monitor the trend change of reconstruction error effectively,the adaptive threshold was chosen as the decision criterion of gearbox fault.Finally,by utilizing the record data before and after fault to simulation,results showed the validity of deep autoencoder model on gearbox fault detection.
Keywords:Wind turbine  gearbox  fault detection  deep autoencoder  adaptive threshold
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号