首页 | 本学科首页   官方微博 | 高级检索  
     

基于Android平台的人脸跟踪系统设计与实现
引用本文:申燕萍. 基于Android平台的人脸跟踪系统设计与实现[J]. 机床与液压, 2018, 46(18): 174-179
作者姓名:申燕萍
作者单位:常州轻工职业技术学院 信息工程与技术学院
基金项目:Jiangsu Province Natural Science Fund Project (BK20140265), College Students’ Innovative Projects in Jiansu Province Department of Education (201513101013Y), Jiangsu University Philosophy Social Science Research Funded Projects (2014SJB499)
摘    要:针对现阶段大多数Android平台下人脸检测与跟踪系统精度不高的问题,设计了一种基于Android平台的无监督人脸目标检测与跟踪系统来解决这个问题。该系统采用基于粒子滤波和背景减除的方法,能够在无先验知识的情况下自动探测和跟踪视频监控序列中移动人脸目标。采用 VC+〖KG-*2〗+和Open CV对该方法进行了具体实现,并介绍了开发环境搭建,最后成功移植到Android平台上。实验测试结果表明,该方法可以成功地检测并跟踪人脸目标。与其他方法进行比较,提出的方法的实时性和稳健性能更高,即跟踪效果更好。

关 键 词:目标检测  人脸跟踪  粒子滤波  无监督  实时性

Design and implementation of human face tracking system based on Android platform
Abstract:For the low accuracy of face detection and tracking system on most Android platforms at this stage, an unsupervised face target detection and tracking system based on Android platform is proposed in this paper. Adopting the method based on particle filtering and background subtraction, this system can automatically detect and track the moving face targets in a video surveillance sequence without prior knowledge. VC++ and Open CV are used to carry out the specific implementation of the method, the establishment of development environment is introduced, and the method is transplanted to the Android platform successfully. The experimental results show that the face target can be detected and tracked by using this method successfully. Compared with other methods, the proposed method has higher real time performance and robustness, and it has better tracking effects.
Keywords:Target detection   Face tracking   Particle filtering   Non supervision   Real time
点击此处可从《机床与液压》浏览原始摘要信息
点击此处可从《机床与液压》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号