首页 | 本学科首页   官方微博 | 高级检索  
     


Deep placement of urea supergranules in transplanted rice: Principles and practices
Authors:N K Savant  P J Stangel
Affiliation:1. International Fertilizer Development Center, 35662, Muscle Shoals, AL, USA
Abstract:Rice is the most important food crop in the developing countries of Asia, where population densities are very high and overall dietary levels are not adequate. In south and southeast Asia, rainfed and irrigated transplanted rice occupies nearly two–thirds of the rice-growing area and produces more than 80% of the paddy rice. In these areas, prilled urea (PU) conventionally applied by farmers is very inefficiently used by transplanted rice largely because of serious losses (up to 60% of applied N) via NH3 volatilization, denitrification, leaching, and/or runoff. In order to minimize N loss, especially loss due to denitrification, historically the Japanese have used different ways of deep placing fertilizer N. In 1975, IFDC proposed use of supergranules of urea (USG) in place of mudballs containing urea fertilizer to achieve the same agronomic benefits as achieved through the Japanese concept of deeppoint placement of fertilizer N in transplanted rice. USG can be prepared by melt-type processes (pan granulation, falling curtain, and fluid bed) and briquetting (a special type of compaction). The latter process seems to be the most cost-effective viable alternative. Small-scale briquetting machines have been developed to produce urea bgriquettes (UB) at village level at a rate of 200–250 kg h?1. Basically, USG are large, discrete particles of ordinary urea (NH2)2CO] containing 46% N as NH2 (amide form); their weights may vary from 1 to 2 g per particle. USG from melt granulation process are nearly spherical with a relatively smooth surface, while UB from briquetting will be pillow-shaped with broken edges. Placement of USG can be done efficiently by handafter conventional line transplanting (e.g., researcher's method or IFDC transplanting guide method) orduring line transplanting (e.g., IFDC dispenser method) at the rate of one USG near the center of each four rice hills to a 7–10 cm soil depth. The IFDC methods have been developed mainly for economically disadvantaged small rice farmers of developing countries, especially those who transplant rice at random in rainfed areas. Other alternative manual methods such as incorporation of broadcast USG, random deep placement of USG by hand before line transplanting, or the deep placement by foot before or after transplanting may be less labor intensive; however, their agronomic efficiency has been low and highly variable, and they therefore cannot be recommended to farmers. Various continuous operation-type applicators (prototypes) have been developed in the Philippines, India, and China for mechanical deep placement of USG in line-transplanted rice. A few prototypes have been found to be labor saving and agronomically efficient when tested on research farms. However, several design-related problems associated with their metering mechanisms, placement depths, closing of furrows at the placement sites, output per workday, and/or operators' comfort, etc., need to be solved. In short, continuous operation-type applicators that are affordable and still efficient for deep placement of UB are not yet available for use on farmers' fields where floodwater and soil conditions vary substantially. The noncontinuous operation-type UB applicator prototype developed by IFDC is not as labor saving as the continuous operation-type applicators. However, its proper use with adequate practice can help to minimize the drudgery and to save up to 40% of the labor required for the hand placement method. This completely manual UB applicator, made of polyvinyl chloride (PVC) is simple to use, lightweight, and affordable as well as agronomically efficient on farmers' fields. As a result of diffusive transport and cation exchange, typically steep concentration gradients (or spatial distribution patterns) of ammonium exist at the placement sites and eventually control the rate and duration of availability of USG-N to the rice plants. USGper se is not a slow-release nitrogen fertilizer but behaves like a slowly available nitrogen fertilizer. Because the deep-placed USG-N is well protected from various N loss mechanisms (except leaching) at the placement sites in soils and the spatial ammonium concentration gradients help to improve its plant availability, (1) uptake of N by rice plants (recovery) is significantly increased, (2) relatively smaller amounts of USG-N as nonexchangeable ammonium and/or immobilized organic N stay in soil, and (3) eventually N losses (gaseous and runoff) are markedly decreased. Thus, this practice is agronomically efficient as well as environmentally safe. However, this practice should not be used in permeable soil with coarse texture and low cation exchange capacity (CEC) because the high loss of USG-N via leaching will significantly decrease N uptake by the rice plants and eventually grain yield too. Several hundred field trials conducted by national and international institutions in south and southeast Asia since 1975 have demonstrated the agronomic superiority of the deep placement of USG vis-a-vis split applications of PU in transplanted rice. In general, paddy yield responses to deep-placed USG tend to be more curvilinear than do those to split-applied PU, thus resulting in higher agronomic efficiency for deep-placed USG in the lower range of N rates (30–80 kg N ha?1) than in the higher range of N rates (> 90 kg N ha?1). Depending on agroclimate and N rates used, in general deep-placed USG can help to provide a saving of urea fertilizer of up to 65% with an average of 33% and can help to increase grain yields up to 50% with an average of 15% to 20% over that with the same amount of split-applied N as PU, especially in the lower range of N rates. USGper se is not an efficient nitrogen fertilizer, but the proper deep placement of USG in transplanted rice makes it agronomically efficient. In using USG, consideration of the following factors should help to ensure agronomic efficiency of deep-placed USG and increase the chances of obtaining additional yield.
  1. Soil factors: Only use in soils having a low water percolation rate and a CEC ? 10 meq 100 g?1 soil.
  2. Plant factors: Give preference to short- to medium-duration dwarf rice varieties. For the longduration variety, basal deep-placed USG with a suitable topdressing of N as PU at panicle initiation stage would be helpful.
  3. Management factors: Apply basally 30 to 60 kg USG-N ha?1 using only USG of the right weight (1–2 g urea granule?1). Place one supergranule for each four hills at 7–10 cm soil depth using the right plant population and modified spacing. Use modified 20 cm × 15 cm or 20 cm × 20 cm spacing to facilitate efficient placement of USG by hand or machine. Workers should always use the so-called traffic lane of the modified spacing for performing all post-transplanting field operations. When deep placement of USG is delayed after transplanting, extra care is necessary to close the holes left at the placement sites. When puddling is inadequate or improper and deep placement is done during transplanting, some care may be required to close the holes.
A scheme of small-scale production of UB at village level, using briquetting machines and locally available PU as a feedstock, looks promising for developing countries. The estimated production cost of UB is likely to be up to 10% higher than that of PU. In general, the estimated incremental benefit/cost ratios of hand deep-placed USG in line-transplanted rice are quite attractive, usually ?5 for small rice farmers of developing Asia. Technological and agroeconomic considerations suggest that the practice of hand deep placement of USGduring or after line transplanting appears to be a right agrotechnology for the resource-scarce small rice farmers of developing countries for efficiently using affordable doses of nitrogen (30–60 kg UB-N ha?1) to significantly increase grain yields of transplanted rice. For other rice farmers who are not economically handicapped, who have access to irrigation, and who transplant rice in line and can afford to use high rates of N (> 90 kg N ha?1), it can be an attractive practice, if appropriate machines for deep placement of USG have been developed. Therefore, research and development work is needed to develop affordable, labor-saving, and agronomically efficient continuous operation-type applicators for mechanical deep placement of UB. The use of USG as a source of N for transplanted rice has potential in developing countries. What is now required is to first develop practical stepwise and region-specific agrotechnologies consisting of appropriate UB supply schemes and rice farming systems based on hand or machine deep placement of UB in line-transplanted rice for different regions in a given country. Then it will be necessary to adopt an appropriate diffusion strategy for transfer of the region-specific agrotechnologies to the rice farmers. In this extension activity, long-term commitment and integrated efforts are required by national government organizations as well as by nongovernment organizations and the fertilizer industry.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号