首页 | 本学科首页   官方微博 | 高级检索  
     


Confined Amorphous Red Phosphorus in MOF‐Derived N‐Doped Microporous Carbon as a Superior Anode for Sodium‐Ion Battery
Authors:Weihan Li  Shuhe Hu  Xiangyu Luo  Zhongling Li  Xizhen Sun  Minsi Li  Fanfan Liu  Yan Yu
Affiliation:1. Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, P.R. China;2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, P.R. China
Abstract:Red phosphorus (P) has attracted intense attention as promising anode material for high‐energy density sodium‐ion batteries (NIBs), owing to its high sodium storage theoretical capacity (2595 mAh g?1). Nevertheless, natural insulating property and large volume variation of red P during cycling result in extremely low electrochemical activity, leading to poor electrochemical performance. Herein, the authors demonstrate a rational strategy to improve sodium storage performance of red P by confining nanosized amorphous red P into zeolitic imidazolate framework‐8 (ZIF‐8) ‐derived nitrogen‐doped microporous carbon matrix (denoted as P@N‐MPC). When used as anode for NIBs, the P@N‐MPC composite displays a high reversible specific capacity of ≈600 mAh g?1 at 0.15 A g?1 and improved rate capacity (≈450 mAh g?1 at 1 A g?1 after 1000 cycles with an extremely low capacity fading rate of 0.02% per cycle). The superior sodium storage performance of the P@N‐MPC is mainly attributed to the novel structure. The N‐doped porous carbon with sub‐1 nm micropore facilitates the rapid diffusion of organic electrolyte ions and improves the conductivity of the encapsulated red P. Furthermore, the porous carbon matrix can buffer the volume change of red P during repeat sodiation/desodiation process, keeping the structure intact after long cycle life.
Keywords:microporous carbon  N‐doping  red phosphorus  sodium‐ion batteries  ZIF‐8
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号