首页 | 本学科首页   官方微博 | 高级检索  
     


Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithium‐Ion Batteries
Authors:Zhixin Tai  Chandrasekar M Subramaniyam  Shu‐Lei Chou  Lingna Chen  Hua‐Kun Liu  Shi‐Xue Dou
Affiliation:1. Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales, Australia;2. School of Computer Science and Technology, University of South China, Hengyang, China
Abstract:The most promising cathode materials, including LiCoO2 (layered), LiMn2O4 (spinel), and LiFePO4 (olivine), have been the focus of intense research to develop rechargeable lithium‐ion batteries (LIBs) for portable electronic devices. Sluggish lithium diffusion, however, and unsatisfactory long‐term cycling performance still limit the development of present LIBs for several applications, such as plug‐in/hybrid electric vehicles. Motivated by the success of graphene and novel 2D materials with unique physical and chemical properties, herein, a simple shear‐assisted mechanical exfoliation method to synthesize few‐layered nanosheets of LiCoO2, LiMn2O4, and LiFePO4 is used. Importantly, these as‐prepared nanosheets with preferred orientations and optimized stable structures exhibit excellent C‐rate capability and long‐term cycling performance with much reduced volume expansion during cycling. In particular, the zero‐strain insertion phenomenon could be achieved in 2–3 such layers of LiCoO2 electrode materials, which could open up a new way to the further development of next‐generation long‐life and high‐rate batteries.
Keywords:cathodes  high rate  lithium‐ion batteries  nanosheets
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号