首页 | 本学科首页   官方微博 | 高级检索  
     


Tumor Microenvironment‐Triggered Aggregation of Antiphagocytosis 99mTc‐Labeled Fe3O4 Nanoprobes for Enhanced Tumor Imaging In Vivo
Authors:Zhenyu Gao  Yi Hou  Jianfeng Zeng  Lei Chen  Chunyan Liu  Wensheng Yang  Mingyuan Gao
Affiliation:1. College of Chemistry, Jilin University, Changchun, China;2. Institute of Chemistry, Chinese Academy of Sciences, Zhong Guan Cun, Beijing, China;3. Centre for Molecular Imaging and Nuclear Medicine, School for Radiological and Interdisciplinary Sciences (RAD‐X), Soochow University, Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China;4. School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P. R. China
Abstract:A tumor microenvironment responsive nanoprobe is developed for enhanced tumor imaging through in situ crosslinking of the Fe3O4 nanoparticles modified with a responsive peptide sequence in which a tumor‐specific Arg‐Gly‐Asp peptide for tumor targeting and a self‐peptide as a “mark of self” are linked through a disulfide bond. Positioning the self‐peptide at the outmost layer is aimed at delaying the clearance of the nanoparticles from the bloodstream. After the self‐peptide is cleaved by glutathione within tumor microenvironment, the exposed thiol groups react with the remaining maleimide moieties from adjacent particles to crosslink the particles in situ. Both in vitro and in vivo experiments demonstrate that the aggregation substantially improves the magnetic resonance imaging (MRI) contrast enhancement performance of Fe3O4 particles. By labeling the responsive particle probe with 99mTc, single‐photon emission computed tomography is enabled not only for verifying the enhanced imaging capacity of the crosslinked Fe3O4 particles, but also for achieving sensitive dual modality imaging of tumors in vivo. The novelty of the current probe lies in the combination of tumor microenvironment‐triggered aggregation of Fe3O4 nanoparticles for boosting the T2 MRI effect, with antiphagocytosis surface coating, active targeting, and dual‐modality imaging, which is never reported before.
Keywords:antiphagocytosis  Fe3O4 nanoparticles  sensitive MRI/SPECT imaging  tumor microenvironment‐triggered aggregation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号