首页 | 本学科首页   官方微博 | 高级检索  
     


Magnetic Nanoplatelet‐Based Spin Memory Device Operating at Ambient Temperatures
Authors:Guy Koplovitz  Darinka Primc  Oren Ben Dor  Shira Yochelis  Dvir Rotem  Danny Porath  Yossi Paltiel
Affiliation:1. Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, Israel;2. Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, Israel;3. Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel;4. Department of Materials, Imperial College London, London, UK;5. Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
Abstract:There is an increasing demand for realizing a simple Si based universal memory device working at ambient temperatures. In principle, nonvolatile magnetic memory can operate at low power consumption and high frequencies. However, in order to compete with existing memory technology, size reduction and simplification of the used material systems are essential. In this work, the chiral‐induced spin selectivity effect is used along with 30–50 nm ferromagnetic nanoplatelets in order to realize a simple magnetic memory device. The vertical memory is Si compatible, easy to fabricate, and in principle can be scaled down to a single nanoparticle size. Results show clear dual magnetization behavior with threefold enhancement between the one and zero states. The magnetization of the device is accompanied with large avalanche like noise that is ascribed to the redistribution of current densities due to spin accumulation inducing coupling effects between the different nanoplatelets.
Keywords:magnetic memory  magnetic nanoparticles  molecular electronics  self‐assembled monolayers  spintronics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号