首页 | 本学科首页   官方微博 | 高级检索  
     


The local spatial autocorrelation and the kernel method for identifying black zones. A comparative approach
Authors:Flahaut Benoît  Mouchart Michel  San Martin Ernesto  Thomas Isabelle
Affiliation:a Department of Geography, Université Catholique de Louvain, Place Louis Pasteur 3, Louvain-la-Neuve 1348, Belgium
b Institute of Statistics, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
c National Fund for Scientific Research, Brussels, Belgium
d Center for Operations Research and Econometrics, Louvain-la-Neuve, Belgium
e Departamento de Estadistica, Pontificia Universidad Catolica de Chile, Santiago, Chile
Abstract:This article aims to determine the location and the length of road sections characterized by a concentration of accidents (black zones). Two methods are compared: one based on a local decomposition of a global autocorrelation index, the other on kernel estimation. After explanation, both methods are applied and compared in terms of operational results, respective advantages and shortcomings, as well as underlying conceptual elements. The operationality of both methods is illustrated by an application to one Belgian road.
Keywords:Black zones   Kernel estimators   Local spatial autocorrelation   Road accidents
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号