首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的移动机器人全局定位算法
引用本文:厉茂海,洪炳熔,蔡则苏. 一种新的移动机器人全局定位算法[J]. 电子学报, 2006, 34(3): 553-558
作者姓名:厉茂海  洪炳熔  蔡则苏
作者单位:哈尔滨工业大学计算机科学与技术学院,黑龙江,哈尔滨,150001;哈尔滨工业大学计算机科学与技术学院,黑龙江,哈尔滨,150001;哈尔滨工业大学计算机科学与技术学院,黑龙江,哈尔滨,150001
摘    要:粒子滤波器能够给出移动机器人全局定位非线性非高斯模型的近似解.然而,当新感知出现在先验概率的尾部或者与先验相比感知概率太尖时,传统的粒子滤波器会退化导致定位失败.本文提出了一种重要性采样跟中心差分滤波器(central difference filter,CDF)相结合的新算法,并对测量更新步的加权粒子集应用基于KD-树的加权期望最大(weighted expectation maximization,WEM)自适应聚类算法获得表示机器人位姿状态后验密度的高斯混合模型(Gaussian mixture model,GMM).实验结果表明,新方法提高了定位准确率,降低了计算复杂度.

关 键 词:移动机器人  全局定位  粒子滤波器  中心差分滤波器  加权期望最大  高斯混合模型
文章编号:0372-2112(2006)03-0553-06
收稿时间:2005-04-15
修稿时间:2005-04-152005-10-16

A Novel Algorithm for Mobile Robot Global Localization
LI Mao-hai,HONG Bing-rong,CAI Ze-su. A Novel Algorithm for Mobile Robot Global Localization[J]. Acta Electronica Sinica, 2006, 34(3): 553-558
Authors:LI Mao-hai  HONG Bing-rong  CAI Ze-su
Affiliation:Dept.of Computer Science & Technology,Harbin Institute of Technology,Harbin,Heilongjiang 150001,China
Abstract:The particle filter can give the approximate solutions to the non-linear non-Gaussian model of mobile robot global localization.However,if the new measurements appear in the tail of the prior or if the likelihood is too peaked in comparison to the prior,the conventional particle filter can degenerate and make localization fail.We present a novel algorithm that combines an importance sampling with central difference filter(CDF).The posterior pose state density is represented by Gaussian mixture model(GMM) that is recovered from the weighted particle set of the measurement update step by means of a weighted expectation maximization(WEM) adaptive clustering algorithm,which based on the kd-trees.Experimental results show that this new approach has an improved localization accuracy and reduceds computational complexity.
Keywords:mobile robot  global localization  particle filters  central difference filter(CDF)  weighted expectation maximization(WEM)  Gaussian mixture model(GMM)  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号