首页 | 本学科首页   官方微博 | 高级检索  
     


Trace-based derivation of a scalable lock-free stack algorithm
Authors:Lindsay Groves  Robert Colvin
Affiliation:1. School of Mathematics, Statistics and Computer Science, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
2. ARC Centre for Complex Systems,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
Abstract:We show how a sophisticated, lock-free concurrent stack implementation can be derived from an abstract specification in a series of verifiable steps. The algorithm is based on the scalable stack algorithm of Hendler et al. (Proceedings of the sixteenth annual ACM symposium on parallel algorithms, 27–30 June 2004, Barcelona, Spain, pp 206–215), which allows push and pop operations to be paired off and eliminated without affecting the central stack, thus reducing contention on the stack, and allowing multiple pairs of push and pop operations to be performed in parallel. Our algorithm uses a simpler data structure than Hendler, Shavit and Yerushalmi’s, and avoids an ABA problem. We first derive a simple lock-free stack algorithm using a linked-list implementation, and discuss issues related to memory management and the ABA problem. We then add an abstract model of the elimination process, from which we derive our elimination algorithm. This allows the basic algorithmic ideas to be separated from implementation details, and provides a basis for explaining and comparing different variants of the algorithm. We show that the elimination stack algorithm is linearisable by showing that any execution of the implementation can be transformed into an equivalent execution of an abstract model of a linearisable stack. Each step in the derivation is either a data refinement which preserves the level of atomicity, an operational refinement which may alter the level of atomicity, or a refactoring step which alters the structure of the system resulting from the preceding derivation. We verify our refinements using an extension of Lipton’s reduction method, allowing concurrent and non-concurrent aspects to be considered separately.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号