首页 | 本学科首页   官方微博 | 高级检索  
     


Excitatory amino acid receptor antagonists: resolution, absolute stereochemistry, and pharmacology of (S)- and (R)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA)
Authors:TN Johansen  K Frydenvang  B Ebert  U Madsen  P Krogsgaard-Larsen
Affiliation:Department of Medicinal Chemistry, Royal Danish School of Pharmacy, Copenhagen, Denmark.
Abstract:We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation using N-BOC protected ATAA and (R)- and (S)-phenylethylamine. Enantiomeric purities (ee > 98%) of (R)- and (S)-ATAA were determined using the Crownpak CR(-) and CR(+) columns, respectively. The absolute configuration of (R)-ATAA was established by an X-ray crystallographic analysis of the (R)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation (Ki > 1,000 microM).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号