首页 | 本学科首页   官方微博 | 高级检索  
     


Residual compressive stress in sputter-deposited TiC films on steel substrates
Authors:A Pan  JE Greene
Affiliation:Departments of Mechanical Engineering, Metallurgy, and the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
Abstract:Polycrystalline TiC films with thickness between 0.1 and 2.8 microm were deposited by r.f. sputtering onto 1010 steel and borosilicate glass substrates at 200°C. All films were found to be in a state of compression. For a film grown under a given set of deposition conditions, the incremental compressive stress, i.e. the average stress in the uppermost deposited layer, was generally found to be largest near the film-substrate interface and to become constant with film thickness tf for tf ? 0.3 microm. However, for a given tf the incremental stress increased with a decrease in the argon sputtering pressure PAr. Experimental results showed that the incremental compressive stress in bulk films could be directly related to the trapped argon concentration. Argon incorporation is due to the burial of energetic species incident on the growing film surface from two primary sources: energetic neutrals produced by Ar+ ions scattered off the target in binary collisions and Ar+ ions accelerated to the substrate owing to its induced negative potential with respect to the positive space charge region in the r.f. discharge. The trapped argon concentration from both contributions increased with decreasing PAr. All films grown on steel substrates exhibited good adhesion as indicated by indentation and diamond stylus scratch tests. The residual compressive stress in the films was found to be beneficial for wear-related applications in which the film was subjected to a large tensile stress.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号