首页 | 本学科首页   官方微博 | 高级检索  
     


The relationship between toughness and microstructure in Fe-high Mn binary alloys
Authors:Y Tomota  M Strum and J W Morris
Affiliation:(1) Ibaraki University, Faculty of Engineering, Hitachi-Shi, Japan;(2) Department of Materials Science and with the Lawrence Berkeley Laboratory, University of California, 94703 Berkeley, CA
Abstract:The influence of Mn content on the ductile-brittle transition in 16 to 36 wt pct Mn steels was investigated and interpreted in light of the evolving microstructure. It was found that when hcp ε martensite is present in the as-quenched condition or forms during deformation, it lowers the toughness. In 25Mn steel, the stress concentrations at e plate intersections result in the formation of planar void sheets along the {111}γ planes. The deformation-induced α’ martensite in 16 to 20 pct Mn alloys enhances the toughness, but leads to a ductile-to-brittle transition at low temperatures that is due to the intrusion of an intergranular fracture mode. Binary alloys with greater than 31 pct Mn also fracture in an intergranular mode at 77 K although the impact energy remains quite high. Auger spectroscopy of the fracture surfaces shows no evidence of significant impurity segregation, which suggests the importance of slip heterogeneity in controlling intergranular fracture in these alloys.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号