首页 | 本学科首页   官方微博 | 高级检索  
     


Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase
Authors:DM Manohar  BF Noeline  TS Anirudhan  
Affiliation:Department of Chemistry, University of Kerala, Kariavattom, Trivandrum-695 581, India
Abstract:In this research, the natural bentonite clay collected from Ashapura Clay Mines, Gujarat State, India, was utilized as a precursor to produce aluminium-pillared bentonite clay (Al-PILC) for the removal of cobalt(II) Co(II)] ions from aqueous solutions. The original bentonite clay and Al-PILC were characterized with the help of chemical analyses, methylene blue (MB) adsorption isotherm, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (IR), while the thermal stability of the samples were studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was investigated using potentiometric titrations. Adsorption experiments were conducted under various conditions, i.e., pH, contact time, initial concentration, ionic strength, adsorbent dose and temperature. The most effective pH range for the removal of Co(II) ions was found to be 6.0–8.0. The maximum adsorption of 99.8% and 87.0% took place at pH 6.0 from an initial concentration of 10.0 and 25.0 mg l−1, respectively. Kinetic studies showed that an equilibrium time of 24 h was needed for the adsorption of Co(II) ions on Al-PILC and the experimental data were correlated by either the external mass transfer diffusion model for the first stage of adsorption and the intraparticle mass transfer diffusion model for the second stage of adsorption. The intraparticle mass transfer diffusion model gave a better fit to the experimental data. The Arrhenius and Eyring equations were applied to the data to determine the kinetic and thermodynamic parameters for explaining the theoretical behaviour of the adsorption process. The equilibrium isotherm data were analyzed using the Langmuir, Freundlich and Scatchard isotherm equations and the adsorption process was reflected by Freundlich isotherm. The efficiency of the Al-PILC was assessed by comparing the results with those on a commercial ion exchanger, Ceralite IRC-50. The suitability of the Al-PILC for treating Co(II) solutions was tested using simulated nuclear power plant coolant samples. Acid regeneration was tried for several cycles with a view to recover the adsorbed Co(II) and also to restore the adsorbent to its original state.
Keywords:Bentonite  Pillared clay  Adsorption kinetics  Isotherms  Cobalt(II)  Desorption
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号