首页 | 本学科首页   官方微博 | 高级检索  
     

基于YOLOv5的电力巡检图像缺陷识别研究
引用本文:庞 博,鲍志远,杨明坤,张凌浩,孙小毛,胡 强. 基于YOLOv5的电力巡检图像缺陷识别研究[J]. 四川电力技术, 2022, 45(5): 48-53+94
作者姓名:庞 博  鲍志远  杨明坤  张凌浩  孙小毛  胡 强
作者单位:国网四川省电力公司电力科学研究院;清华大学;国网四川省电力公司乐山供电公司;清华四川能源互联网研究院氢能系统与转化研究所
基金项目:四川省科技计划项目(2021YFG0113);国网四川省电力公司科技项目(52199722000Y)
摘    要:针对输电线路巡检中可能出现的裂化、老化、腐蚀、破损等诸多缺陷的情况,为保证输电线路运行的安全和稳定,文中开展了基于YOLOv5的电力巡检图像缺陷识别研究。在YOLOv5算法的基础上,结合电力巡检图像特点,采用CIOU_Loss作为Bounding box的损失函数,使其具有更快、更好的收敛效果;选用DIOU_NMS用于NMS处理,提高对遮挡重叠目标的识别精度;同时,在对数据集进行分类处理后,采用"分别训练、统一推断"的方法,冻结部分网络层权重来训练网络模型。实验结果显示,基于YOLOv5算法模型可以有效地识别电力巡检图像缺陷情况。

关 键 词:输电线路  缺陷识别  目标检测  YOLOv5

Research on Defect Recognition of Power Patrol Images Based on YOLOv5
PANG Bo,BAO Zhiyuan,YANG Mingkun,ZHANG Linghao,SUN Xiaomao,HU Qiang. Research on Defect Recognition of Power Patrol Images Based on YOLOv5[J]. Sichuan Electric Power Technology, 2022, 45(5): 48-53+94
Authors:PANG Bo  BAO Zhiyuan  YANG Mingkun  ZHANG Linghao  SUN Xiaomao  HU Qiang
Affiliation:State Gird Sichuan Electric Power Research Institute;Tsinghua University;Sate Grid Leshan Electric Power Supply Company;Sichuan Energy Internet Research Institute, Tsinghua University
Abstract:In order to ensure the safety and stability of transmission line operation, image defect recognition research based on YOLOv5 is carried out in view of many defects such as cracking, aging, corrosion and breakage that may occur in line inspection. Based on YOLOv5 algorithm and combined with the characteristics of power patrol images, CIOU_Loss is used as the loss function of Bounding box to make it converge faster and better. DIOU_ NMS is selected for NMS processing to improve the recognition accuracy of occluded overlapping targets. At the same time, after classifying the dataset, the network model is trained by freezing some of the network layer weights using the method of "training separately and inferring uniformly". The experimental results show that the YOLOv5 algorithm model can effectively identify the defects of power patrol images.
Keywords:transmission lines   defect identification   object detection   YOLOv5
点击此处可从《四川电力技术》浏览原始摘要信息
点击此处可从《四川电力技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号