首页 | 本学科首页   官方微博 | 高级检索  
     

求解TSP问题的改进混合蛙跳算法
引用本文:张敬敏,马丽,李媛媛. 求解TSP问题的改进混合蛙跳算法[J]. 计算机工程与应用, 2012, 48(11): 47-50
作者姓名:张敬敏  马丽  李媛媛
作者单位:石家庄经济学院 信息工程学院,石家庄 050031
基金项目:国家自然科学基金(No.40772196); 河北省科技计划项目(No.11213525D No.09213547)
摘    要:针对TSP问题的特点,设计了一种求解TSP问题的改进的混合蛙跳算法。该算法改进了子种群青蛙个体优化的方式,而不仅是对最坏个体进行优化,这种方式可以有效提高算法的收敛速度。提出了青蛙个体翻转时依赖于全局最优解的“导优”概率和依赖于子种群局部最优解的“导次优”概率,进一步提高了算法寻找最优解的能力。在多个TSPLIB上的实验结果表明,该算法是可行有效的。

关 键 词:组合优化问题  旅行商问题(TSP)  混合蛙跳算法  概率  TSPLIB  

Improved shuffled frog-leaping algorithm for traveling salesman problem
ZHANG Jingmin , MA Li , LI Yuanyuan. Improved shuffled frog-leaping algorithm for traveling salesman problem[J]. Computer Engineering and Applications, 2012, 48(11): 47-50
Authors:ZHANG Jingmin    MA Li    LI Yuanyuan
Affiliation:College of Information Engineering, Shijiazhuang University of Economics, Shijiazhuang 050031, China
Abstract:According to the TSP character,an improved shuffled frog-leaping algorithm is designed.The algorithm improves the child population frog individual optimization way,not just the worst individual optimization.This way can improve the convergent speed of the algorithm effectively.In order to enhance the ability of searching,"guide optimal"probability and"guide suboptimal"probability are put forward.The"guide optimal"probability represents the global optimum solution probability that the individual reversal depends on.The"guide suboptimal"probability represents the subpopulation optimum solution probability that the individual reversal depends on.Through experiments to multiple problems of the TSPLIB,the results show that the algorithm is feasible and effective.
Keywords:combinatorial optimization problem  Traveling Salesman Problem(TSP)  shuffled frog-leaping algorithm  probability  TSPLIB
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号