首页 | 本学科首页   官方微博 | 高级检索  
     

PCA与ICA相结合的语音信号盲分离
引用本文:王玉静,于凤芹. PCA与ICA相结合的语音信号盲分离[J]. 计算机工程与应用, 2012, 48(10): 124-127
作者姓名:王玉静  于凤芹
作者单位:江南大学 物联网工程学院,江苏 无锡 214122
基金项目:国家自然科学基金(No.61075008)
摘    要:针对ICA用于语音信号盲分离时,由于数据量过大、迭代次数过多引起的收敛速度慢的问题,采用一种PCA和ICA相结合的盲分离算法PCA-ICA。通过PCA对混合语音信号进行白化处理,消除了原始各道数据间的二阶相关性。在仿真实验中,采用相似系数矩阵作为评价混合语音信号分离效果的标准,结果表明PCA-ICA算法与ICA算法相比,在达到几乎相同的相似系数矩阵的情况下,迭代次数减少了90%,从而分离速度提高了3倍,有效地解决了ICA分离算法收敛速度慢的问题。

关 键 词:盲源分离  独立分量分析  主成分分析  

Blind separation for speech signal based on PCA and ICA
WANG Yujing , YU Fengqin. Blind separation for speech signal based on PCA and ICA[J]. Computer Engineering and Applications, 2012, 48(10): 124-127
Authors:WANG Yujing    YU Fengqin
Affiliation:School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Abstract:In order to solve the slow convergence problem of ICA based algorithm and high computational cost due to excessive amount data, an blind separation algorithm based on PCA-ICA for speech signal is proposed. PCA is used to remove the second-order correlations among different dimensions of feature from original data. Using simi- larity coefficient matrix as the separation effect standard, the simulation experiment results show that the proposed method can reduce 90% of iterations and is 3 times faster compared with ICA with the same separation accuracy. Thus the ICA-PCA algorithm effectively solves the slow convergence problem of original ICA method.
Keywords:blind source separation  independent component analysis  principle component analysis
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号