首页 | 本学科首页   官方微博 | 高级检索  
     

一种k均值和神经网络集成的语音识别方法
引用本文:姚敏锋,李心广,黄文涛. 一种k均值和神经网络集成的语音识别方法[J]. 计算机工程与应用, 2012, 48(12): 144-147
作者姓名:姚敏锋  李心广  黄文涛
作者单位:1.广东外语外贸大学 信息学院,广州 5100062.广东工业大学 自动化学院,广州 510006
基金项目:广东省科技计划项目(No.2008B080701007); 广东省自然科学基金(No.9151042001000017)
摘    要:提出了一种基于k均值聚类和BP神经网络集成的语音识别方法,该方法以神经网络集成模型为基础,利用k均值聚类算法选择部分有差异性的个体神经网络再进行集成学习,既克服了单个BP网络模型容易局部收敛和不稳定性的缺点,又解决了传统集成方法训练时间长和个体网络差异性不明显的问题。通过对非特定人孤立词的语音识别的实验,证实了该方法的有效性。

关 键 词:k均值聚类  神经网络集成  语音识别  

Speech recognition based on k-means clustering and neural network ensemble
YAO Minfeng , LI Xinguang , HUANG Wentao. Speech recognition based on k-means clustering and neural network ensemble[J]. Computer Engineering and Applications, 2012, 48(12): 144-147
Authors:YAO Minfeng    LI Xinguang    HUANG Wentao
Affiliation:1.School of Informatics, Guangdong University of Foreign Studies, Guangzhou 510006, China2.School of Automation, Guangdong University of Technology, Guangzhou 510006, China
Abstract:In this paper,a method of speech recognition based on k-means clustering and neural network ensemble is proposed.The method is based on neural network model.After a number of individual neural networks are trained,the k-means clustering algorithm is used to select a part of the trained individual networks'weights and thresholds with small similarity.Many neural networks with the selected weights and thresholds are combined.The method not only overcomes the shortcomings that single BP neural network model is easy to local convergence and lack of stability,but also solves the problems that the traditional method in training lasts for a long time and the differences of individual network are not obvious.The experimental results prove the effectiveness of this method.
Keywords:k-means clustering  neural network ensemble  speech recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号