首页 | 本学科首页   官方微博 | 高级检索  
     


Surface remeshing with robust high-order reconstruction
Authors:Navamita Ray  Tristan Delaney  Daniel R. Einstein  Xiangmin Jiao
Affiliation:1. Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, USA
2. Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
Abstract:Remeshing is an important problem in variety of applications, such as finite element methods and geometry processing. Surface remeshing poses some unique challenges, as it must deliver not only good mesh quality but also good geometric accuracy. For applications such as finite elements with high-order elements (quadratic or cubic elements), the geometry must be preserved to high-order (third-order or higher) accuracy, since low-order accuracy may undermine the convergence of numerical computations. The problem is particularly challenging if the CAD model is not available for the underlying geometry, and is even more so if the surface meshes contain some inverted elements. We describe remeshing strategies that can simultaneously produce high-quality triangular meshes, untangling mildly folded triangles and preserve the geometry to high-order of accuracy. Our approach extends our earlier works on high-order surface reconstruction and mesh optimization by enhancing its robustness with a geometric limiter for under-resolved geometries. We also integrate high-order surface reconstruction with surface mesh adaptation techniques, which alter the number of triangles and nodes. We demonstrate the utilization of our method to meshes for high-order finite elements, biomedical image-based surface meshes, and complex interface meshes in fluid simulations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号