摘 要: | SOC(state of charge)的准确估算是电池管理系统的重要目标之一。针对传统神经网络方法在磷酸铁锂电池SOC估算中存在计算复杂、学习时间过长的问题,提出了一种新的基于ELM(extreme learning machine)的电池SOC估算方法。利用电池充放电系统完成磷酸铁锂电池在不同电流下的放电实验,获得实时测量的电压、电流。运用实验获得的数据对模型进行训练和预测,将预测效果与BP(back propagation)神经网络和SVM(support vector machine)进行对比,研究ELM在SOC预测中的可行性和优势。经分析可知,基于ELM的磷酸铁锂电池荷电状态估算模型的精度更高,并且网络训练速度得到大幅提升。
|